一种自动化控制虚拟仿真制造平台

allin2022-07-12  274



1.本发明属于环境工程及相关设备技术领域,尤其涉及一种对焦化污染场地进行生物修复的技术,具体涉及一种基于自动化控制虚拟仿真制造平台建立非一致性判别引导式孪生模型进行生物修复强化工艺的方法以及一种自动化控制虚拟仿真制造平台,本发明是申请号为202110431277.x 的发明专利的分案申请。


背景技术:

2.近十几年来,由于工业企业关停并转或搬迁,由此释放了大量的污染或潜在污染场地,不仅对区域土壤和地下水环境造成污染,也威胁着地块周边居民的身体健康。2014年环保部发布了《全国土壤污染状况调查公报》,公报显示,全国土壤污染超标率已达到16.1%,污染场地土壤的修复与治理是一个系统性的且十分复杂的工程项目,现代修复和治理方案是需要依托先进科技和互联网技术的,同时需要将修复和治理连通为一体,还要做好修复治污的跟进和监督工作,以提升污染治理的效果。
3.例如文献《多环芳烃污染土壤修复技术的研究进展》所公开的土壤修复技术,它存在如下的技术缺陷:
4.1)难以找到最优的工艺参数多环芳烃降解率低,降解难度大,生物修复时间过长,成本高;
5.2)场地规模的修复受现场条件限制;
6.3)无法实现异地监控和实时控制车间内的现场生产数据和加工过程,无法通过移动终端管控平台对现场人员发出生产指示。


技术实现要素:

7.本发明的目的是为了解决现有技术存在的难以找到最优的工艺参数多环芳烃降解率低,降解难度大,生物修复时间过长,成本高;场地规模的修复受现场条件限制;无法实现异地监控和实时控制车间内的现场生产数据和加工过程,无法通过移动终端管控平台对现场人员发出生产指示等缺陷,而提供的一种对焦化污染场地进行生物修复的技术。
8.为了解决上述技术问题,所采用的技术方案如下:
9.一种自动化控制虚拟仿真制造平台,它包括集成控制系统、工艺处理系统、虚拟仿真系统、信号反馈系统,集成控制系统的数据端与工艺处理系统的数据端连接,工艺处理系统的数据端与虚拟仿真系统的数据端连接,虚拟仿真系统的数据端与信号反馈系统的数据端连接;
10.工艺处理系统的数据端与虚拟仿真系统的数据端双向连接,虚拟仿真系统将从工艺处理系统接收到的信号传输至信号反馈系统,进行工艺产品的测量;集成控制系统接收来自信号反馈系统提供的判断结果,对工艺处理系统发出指示命令,对各工艺流程进行控制。
11.上述工艺处理系统包括预处理物理车间、生物修复物理车间、水气处理与回收物
理车间其中的一种或多种;虚拟仿真系统包括预处理虚拟车间、生物修复虚拟车间、水气处理与回收虚拟车间其中的一种或多种。
12.还包括用户数据库,用户数据库用于存储按照污染土壤修复的工艺流程和自动化程度,所需要进行的工艺流程和工艺方法的设计。
13.工艺流程及工艺参数应用于工艺处理系统中对应的物理车间,按照工艺流程完成一道工序后,利用检测机器人对该物理车间的工艺输出数据进行检测,将输出数据传输至信号反馈系统。
14.在信号反馈系统中,将输出数据与用户数据库中的规则数据进行比较,判断输出数据是否合格;若不合格,则进行相应工序的参数优化,可通过集成控制系统,精确定位至对应的物理车间,及时有效地进行反馈。
15.在预处理物理车间中设有预处理反应器,在使用时,先将污染土壤输送至预处理反应器中,投入若干种一定量的氧化剂,通过检测机器人,得出预处理后若干种污染物的浓度,预处理物理车间输出的实时数据为若干种污染物的浓度;
16.在生物修复物理车间中采用生物强化堆肥工艺,具体的,采用运输机器人将预处理合格的污染土壤从预处理物理车间输送至生物修复物理车间中的生物反应器,设定其温度、湿度、氧气浓度,通过若干种微生物浓度来进行堆肥,从而降解污染土壤中的有机质,并得出强化堆肥后的若干种有机质浓度,生物修复物理车间输出的实时数据为若干种有机物浓度;
17.水气处理与回收物理车间中采用石灰石-石膏湿法脱硫技术,即采用液体吸收剂洗涤烟气,以吸收so2,生物修复车间产生的废气到达水气处理与回收物理车间,在废气处理与循环系统中,设定吸收塔内的废气量,浆液喷淋量,氧化空气流量,浆液密度,环境温度,环境压力,循环浆液的ph值;并得出so2排放浓度,水气处理与回收物理车间输出的实时数据为so2排放浓度。
18.上述虚拟仿真系统将接收到的车间输出数据传输至信号反馈系统,信号反馈系统将输出数据与用户数据库中的规则数据进行比对,判断检测结果是否合格,若不合格,则需要进行相应工序的参数优化,找到最优参数,通过集成控制系统,精确定位至对应的物理车间,及时有效的进行反馈,对不合格的物理车间重新进行参数设置;若合格,则进行下一道工序流程,直到完成所有工艺流程。
19.一种非一致性判别引导式孪生模型的生物修复强化工艺,它包括以下步骤:
20.步骤一:构建自动化控制虚拟仿真制造平台,所述自动化控制虚拟仿真制造平台为权利要求 2中的平台,虚拟仿真系统将从工艺处理系统接收到的信号传输至信号反馈系统,进行工艺产品的测量。集成控制系统接收来自信号反馈系统提供的判断结果,对工艺处理系统发出指示命令,对各工艺流程进行控制;
21.步骤二:按照污染土壤生物修复的工艺流程和自动化程度,进行工艺流程和工艺方法的设计并存储于用户数据库中;
22.步骤三:按照步骤二所设计的工艺方法,设置每个工序所需的工艺参数并储存于用户数据库中;
23.步骤四:将步骤三选择的工艺参数应用于工艺处理系统中对应的物理车间,按照工艺流程完成一道工序后,利用检测机器人对该物理车间的工艺输出数据进行检测,将输
出数据传输至信号反馈系统;
24.步骤五:在信号反馈系统中,将输出数据与用户数据库中的规则数据进行比较,判断输出数据是否合格。若不合格,则进行相应工序的参数优化,通过集成控制系统,精确定位至对应的物理车间,及时有效地进行反馈,重复步骤三,输入优化后的工艺参数,进行新一轮的工艺生产测试;若合格,则进入下一道工序,直到完成所有工艺流程;
25.步骤六:完成所有工艺流程即预处理、生物修复、废气处理与循环后,进行工艺产品测量,若满足要求,即多环芳烃降解率≥95%,修复周期缩短至≤50天,则工艺产品测试通过,结束该套工艺;若工艺产品测试未通过,则需要进行参数优化,重复步骤五,直到得到满足要求的工艺产品。
26.在步骤一中,物理车间与虚拟车间在连接时建立非一致性判别引导式孪生模型。
27.在步骤一中,物理车间与虚拟车间在连接时建立非一致性判别引导式孪生模型,其具体操作步骤如下:
28.步骤一:建立数字孪生五维模型架构,包括五大模块,分别是物理层模块,孪生层模块,多感知层模块,数据库层模块和操纵层模块,以thingworx工业物联网平台作为系统服务平台,建立基于数字孪生的自动化控制虚拟仿真制造平台。
29.步骤二:建立模型,将第一帧计算得到的q0作为监督信息,引入一个可在线学习的判别性模型δ,得到新的打分公式如下:
30.f(xi,qi;θ,s)=(b(s*qi))*μ(xi)
ꢀꢀꢀ
(1)
31.其中,qi=μ(zi);θ—离线训练好的一组参数,在跟踪的过程中不发生变化;μ(
·
)—离线训练好的特征提取器;b—激活函数;s—在线判别模型δ的权重,*表示卷积操作得到的映射;
32.步骤三:故利用不同时刻得到的判别性模型的δj网络参数sj之间的kl散度对δj管理的策略,计算不同网络参数分布之间的kl散度矩阵d
kl
,如下式所示:
[0033][0034]
p(sm),p(sn)∈r1×n—sm,sn相应的概率分布;(m,n)—d
kl
中第m行,第n列的元素;
[0035]
步骤四:对于每一帧得到的新的δi,计算其与a个现有网络的kl散度向量dt,找到最小 kl散度距离所对应的δk,k∈a,及其距离di(m),利用如式(3)所示的策略f,对a个判别性模块进行更新;
[0036][0037]vi
—当前时刻i的得分响应图;令构建用于在线更新的相似度计算损失函数如式(4)所示:
[0038][0039]
||
·
||2—l2范数,对神经网络权重s进行正则化;λ—正则化系数;n—样本的个数;
[0040]
表示第j个样本权重;0《α《1—样本权重的衰减参数;
[0041]
步骤五:设计在线更新策略,优化的目的是寻找一个合适的δs,使得最小。
[0042]
与现有技术相比,本发明具有如下技术效果:
[0043]
1)本发明通过数字孪生技术将实际生产过程中的物理车间与计算机上的虚拟车间进行连接,在自动化控制虚拟仿真制造平台中,将相关的工艺参数和设备参数等相关信息都完整地显示在虚拟仿真系统中,自动化控制虚拟仿真制造平台具备将这些数据进行强大的整理、归类、分析的功能,管理者可以以直观沉浸的方式随时远程监测和控制工艺流程并且通过集成控制系统进行优化反馈,全方位满足对生产数据的需求,实现对车间内实时监控现场生产数据、加工过程监测与管控、优化反馈调节、通过移动终端管控平台对现场人员发出生产指示,确保生产现场一直处于可控状态,增强了生产过程各级的决策与控制能力,实现“以虚控实”;
[0044]
2)本专利提出一种新的具有判别性的跟踪方法:非一致性判别引导式孪生模型,同时使用二阶优化的方法对模型进行更新,实现通过更少的迭代次数有更快的收敛;
[0045]
3)用户通过使用本发明在自动化控制虚拟仿真制造平台中,构建“预处理-生物修复-废气生物过滤-水气循环利用”多元耦合修复工艺。实现污染物耦合降解工艺的智能化运行,使污染土壤修复的同时,废水、废气达标排放。通过不断进行参数优化,得到最优的工艺参数,实现工艺产品生产效率最大化,实现预处理和生物修复时长的精准匹配,达到工艺运行成本最低。具有一定的智能性和实操性,可降低成本和提高生产效率。
附图说明
[0046]
下面结合附图和实施例对本发明作进一步说明:
[0047]
图1为本发明方法的流程图;
[0048]
图2为本发明集成控制系统对物理车间的控制系统图;
[0049]
图3为本发明涉及到的参数优化中集成学习预测器;
[0050]
图4为本发明涉及到的数字孪生五维模型架构图。
具体实施方式
[0051]
如图1所示,一种自动化控制虚拟仿真制造平台,它包括集成控制系统1、工艺处理系统2、虚拟仿真系统3、信号反馈系统4,集成控制系统1的数据端与工艺处理系统2的数据端连接,工艺处理系统2的数据端与虚拟仿真系统3的数据端连接,虚拟仿真系统3的数据端与信号反馈系统4的数据端连接;
[0052]
工艺处理系统2的数据端与虚拟仿真系统3的数据端双向连接,虚拟仿真系统3将从工艺处理系统2接收到的信号传输至信号反馈系统4,进行工艺产品的测量;集成控制系统1接收来自信号反馈系统4提供的判断结果,对工艺处理系统2发出指示命令,对各工艺流程进行控制。
[0053]
工艺处理系统2包括预处理物理车间5、生物修复物理车间6、水气处理与回收物理车间7 其中的一种或多种;虚拟仿真系统3包括预处理虚拟车间8、生物修复虚拟车间9、水气处理与回收虚拟车间10其中的一种或多种。
[0054]
还包括用户数据库11,用户数据库11用于存储按照污染土壤修复的工艺流程和自动化程度,所需要进行的工艺流程和工艺方法的设计。
[0055]
工艺流程及工艺参数应用于工艺处理系统2中对应的物理车间,按照工艺流程完成一道工序后,利用检测机器人对该物理车间的工艺输出数据进行检测,将输出数据传输至信号反馈系统4。
[0056]
在信号反馈系统4中,将输出数据与用户数据库11中的规则数据进行比较,判断输出数据是否合格;若不合格,则进行相应工序的参数优化,可通过集成控制系统1,精确定位至对应的物理车间,及时有效地进行反馈。
[0057]
在预处理物理车间5中设有预处理反应器,在使用时,先将污染土壤输送至预处理反应器中,投入若干种一定量的氧化剂,通过检测机器人,得出预处理后若干种污染物的浓度,,预处理物理车间输出的实时数据为若干种污染物的浓度;
[0058]
在生物修复物理车间6中采用生物强化堆肥工艺,具体的,采用运输机器人将预处理合格的污染土壤从预处理物理车间输送至生物修复物理车间中的生物反应器,设定其温度、湿度、氧气浓度,通过若干种微生物浓度来进行堆肥,从而降解污染土壤中的有机质,并得出强化堆肥后的若干种有机质浓度,生物修复物理车间输出的实时数据为若干种有机物浓度;
[0059]
水气处理与回收物理车间7中采用石灰石-石膏湿法脱硫技术,即采用液体吸收剂洗涤烟气,以吸收so2,生物修复车间产生的废气到达水气处理与回收物理车间,在废气处理与循环系统中,设定吸收塔内的废气量,浆液喷淋量,氧化空气流量,浆液密度,环境温度,环境压力,循环浆液的ph值;并得出so2排放浓度,水气处理与回收物理车间输出的实时数据为so2排放浓度。
[0060]
上述虚拟仿真系统3将接收到的车间输出数据传输至信号反馈系统,信号反馈系统4将输出数据与用户数据库中的规则数据进行比对,判断检测结果是否合格,若不合格,则需要进行相应工序的参数优化,找到最优参数,通过集成控制系统,精确定位至对应的物理车间,及时有效的进行反馈,对不合格的物理车间重新进行参数设置;若合格,则进行下一道工序流程,直到完成所有工艺流程。
[0061]
一种非一致性判别引导式孪生模型的生物修复强化工艺,它包括以下步骤:
[0062]
步骤一:构建自动化控制虚拟仿真制造平台,所述自动化控制虚拟仿真制造平台为权利要求 2中的平台,虚拟仿真系统将从工艺处理系统接收到的信号传输至信号反馈系统,进行工艺产品的测量。集成控制系统接收来自信号反馈系统提供的判断结果,对工艺处理系统发出指示命令,对各工艺流程进行控制;
[0063]
步骤二:按照污染土壤生物修复的工艺流程和自动化程度,进行工艺流程和工艺方法的设计并存储于用户数据库中;
[0064]
步骤三:按照步骤二所设计的工艺方法,设置每个工序所需的工艺参数并储存于用户数据库中;
[0065]
步骤四:将步骤三选择的工艺参数应用于工艺处理系统中对应的物理车间,按照工艺流程完成一道工序后,利用检测机器人对该物理车间的工艺输出数据进行检测,将输出数据传输至信号反馈系统;
[0066]
步骤五:在信号反馈系统中,将输出数据与用户数据库中的规则数据进行比较,判
断输出数据是否合格。若不合格,则进行相应工序的参数优化,通过集成控制系统,精确定位至对应的物理车间,及时有效地进行反馈,重复步骤三,输入优化后的工艺参数,进行新一轮的工艺生产测试;若合格,则进入下一道工序,直到完成所有工艺流程;
[0067]
步骤六:完成所有工艺流程即预处理、生物修复、废气处理与循环后,进行工艺产品测量,若满足要求,则工艺产品测试通过,结束该套工艺;若工艺产品测试未通过,则需要进行参数优化,重复步骤五,直到得到满足要求的工艺产品。
[0068]
在步骤一中,物理车间与虚拟车间在连接时建立非一致性判别引导式孪生模型。
[0069]
所述步骤一的具体方法为:基于数字孪生,对焦化污染场地生物修复强化工艺进行全生命周期管理,实时进行数据采集,数据处理,通过模型的仿真模拟,发现有效信息,实时优化设计、进行生产决策、预警运维等相关活动。在生产的全生命周期实现由静态的信息管理到即时有效的动态信息交互。
[0070]
采用数字孪生五维模型架构,如图4所示,包括五大模块,分别是物理层模块,孪生层模块,多感知层模块,数据库层模块和操纵层模块。结合工业物联网平台强大的数据整合和系统集成能力,以thingworx工业物联网平台作为系统服务平台,建立基于数字孪生的自动化控制虚拟仿真制造平台。
[0071]
物理层模块包括车间布局及现场控制系统采集工人状态及现场数据系统生产资源信息系统。孪生层模块包括产品研发系统虚拟仿真优化系统生产决策系统故障预警系统。
[0072]
孪生层模块中的虚拟车间构造的几何模型主要过程为以下三个步骤:
[0073]
(1)物理车间要素的模型建立,其中包含建立要素层级管理、要素的几何模型建立、优化和渲染。该部分工作主要通过3dmax软件完成。
[0074]
(2)搭建虚拟车间的环境要素,并将处理后的要素几何模型有序的安放至虚拟车间环境中。该部分工作主要通过unity软件完成。
[0075]
(3)通过脚本技术实现基于物理车间数据的模型驱动。在整个流程中主要使用到的软件包括3dmax和unity软件。
[0076]
数据库层模块主要储存各种数据,包括物理车间中的设备、厂房、灯光等物理要素属性数据以及能够反映其运行状态的动态过程数据虚拟车间中的表示模型相关数据(包括几何模型、物理模型、行为模型以及规则模型等);专家知识、行业标准、常用算法、常用数据库、常用api接口。
[0077]
多感知层模块:用于车间异构多源数据的实时采集与数据预处理,包括视觉,听觉,触觉和动力感知,嗅觉和味觉。为了实现对真正物理实体的映射和有效体现对应全生命周期的信息流动,需要将模型分解为几个组成部分。本系统采用基于opcua server的采集方式,通过多感知层从数据库或制造现场plc、传感器、工控机等终端获取目标信息数据的接口。
[0078]
操纵层模块通过构建三维虚拟场景、状态看板、实时视频、增强现实来实现多层次监控。基于实时数据驱动的虚拟车间,实现了对车间制造资源的三维可视化导航以及车间物理动作的仿真和实时监控,实现了车间透明化生产、故障问题重现与仿真,满足了使用者对车间的追溯分析、实时监控和预测仿真等需求。
[0079]
由于孪生网络跟踪器的非一致特性可以对相同语义特征的目标进行有效的抑制,
同时可以缓解跟踪过程中目标发生形变的问题。跟踪器对于相似目标判别能力弱,故本专利采取一种非一致性判别引导式孪生模型,这是一种新的具有判别性的跟踪方法。同时使用二阶优化的方法对模型进行更新,实现通过更少的迭代次数有更快的收敛。
[0080]
具体的,在步骤一中,物理车间与虚拟车间在连接时建立非一致性判别引导式孪生模型,其具体操作步骤如下:
[0081]
步骤一:建立数字孪生五维模型架构,包括五大模块,分别是物理层模块,孪生层模块,多感知层模块,数据库层模块和操纵层模块,结合工业物联网平台强大的数据整合和系统集成能力,以thingworx工业物联网平台作为系统服务平台,建立基于数字孪生的自动化控制虚拟仿真制造平台。
[0082]
步骤二:建立模型。为了解决由于目标的形变以及跟踪器在跟踪过程中存在着一定的噪声以及跟踪结果可能有跟踪位置的错误,跟踪得到的目标尺寸的错误上的偏差,这些误差会随着时间i 逐渐累积,跟踪目标的滤波器qi会被污染,从而导致跟踪器无法找到目标这个问题,将第一帧计算得到的q0作为监督信息,引入一个可在线学习的判别性模型δ,得到新的打分公式如下:
[0083]
f(xi,qi;θ,s)=(b(s*qi))*μ(xi)
ꢀꢀꢀ
(1)
[0084]
qi=μ(zi);
[0085]
θ—离线训练好的一组参数,在跟踪的过程中不发生变化
[0086]
μ(
·
)—离线训练好的特征提取器
[0087]
b—激活函数
[0088]
s—在线判别模型δ的权重,*表示卷积操作得到的映射
[0089]
步骤三:随着时间i的增加,不同帧下的相同目标之间的差异会变得更大。故利用不同时刻得到的判别性模型的δj网络参数sj之间的kl散度对δj管理的策略,计算不同网络参数分布之间的kl散度矩阵d
kl
,如下式所示:
[0090][0091]
p(sm),p(sn)∈r1×n—sm,sn相应的概率分布
[0092]
(m,n)—d
kl
中第m行,第n列的元素
[0093]
步骤四:对于每一帧得到的新的δi,计算其与a个现有网络的kl散度向量dt,找到最小 kl散度距离所对应的δk,k∈a,及其距离di(m)。利用如式(3)所示的策略f,对a个判别性模块进行更新。
[0094][0095]vi
—当前时刻i的得分响应图
[0096]
令构建用于在线更新的相似度计算损失函数如式(4)所示:
[0097][0098]
||
·
||2—l2范数,对神经网络权重s进行正则化
[0099]
λ—正则化系数
[0100]
n—样本的个数
[0101]
表示第j个样本权重
[0102]
0《α《1—样本权重的衰减参数
[0103]
步骤五:设计在线更新策略。优化的目的是寻找一个合适的δs,使得最小。具体的优化算法如下:
[0104]
step1 初始化网络权重s,残差r(s),tcg,t.
[0105]
step 2 for i=1,

,t do.
[0106]
step3 计算s下的代入式(6),δs

0.
[0107]
step 4 for j=1,

,tcg,δs=δs0,
[0108]
step5 计算步长:计算β来最小化式(6)
[0109][0110]
step6 更新权重:δs=δs+βdj.
[0111]
step7 更新方向:其中
[0112][0113]
step 8 end for.
[0114]
step 9 s=s+δs.
[0115]
step 10 end for
[0116]
因为要学习的参数和样本少,为了保证速度与精度,采用上述近似二阶的优化算法。为简化计算形式,根据式(4)定义残差为:将rj(s)以及r
n+1
拼接起来,构成r(s)此时,式(4)可以等价为
[0117]
l
up
(s)=||r(s)||2ꢀꢀꢀ
(5)
[0118]vi
—当前时刻i的得分响应图
[0119]
δj—不同时刻得到的判别性模型
[0120]
对式(8)进行二阶泰勒展开,有:
[0121][0122]
hs—hessian矩阵
[0123]
o(||δs||2)—极小量,可以忽略不计
[0124]
本专利提出的算法不仅利用了i时刻的样本图像xi,同时还能保证由xi得到的滤波
器qi不会过于偏离真实的滤波器q0。由于滤波器δ(μ(zi))与q0存在较小的差距,同时δ(μ(zi))还包含了时刻i目标的信息,因此这样的滤波器在面对相同类别的目标时具有更高的判别性。
[0125]
更进一步的,对于工艺处理系统的三个物理车间,采用图3所示的集成学习预测器,对实验测得的大量输入输出数据对进行训练,得到一个稳定的网络输出,使实际输出和理想输出的总误差小于允许值。这样,在网络训练完毕后就可以用集成学习预测器对系统所需输出量作出在线预测。
[0126]
集成学习预测器的第一层个体学习器是若干个弱学习器,在本实施案例中选用五个算法:随机森林,逻辑回归算法,支持向量机,朴素贝叶斯,k近邻算法。采用的结合策略为stacking,将以上五个个体学习器集合成一个强学习器。强学习器选用深度神经网络算法,对于测试集,首先用第一层学习器预测一次,得到第二层学习器即强学习器的输入样本,再用强学习器预测一次, 得到最终的预测结果。根据预测结果,选择适当的优化算法进行优化,求出最优参数。
[0127]
对于预处理物理车间,集成学习预测器的输入量包括a个指标(a种污染物的浓度,记为a 维向量m)和b个可控变量(b种氧化剂的投入量,记为b维向量k),输出量为预处理后a种污染物的浓度(记为a维向量n)。关系式可表示为:f(m,k)=n;
[0128]
采用上述集成学习预测器进行预测,根据t时刻的输入信号m(t)和k(t)以及输出信号 n(t)预测系统在t+δt时刻的输出n(t+δt)。根据预测结果,选择适当的优化算法,通过对氧化剂投量的反复试算寻求到一个最佳氧化剂投量,在满足污染物浓度的要求的条件下使总运行费用达到最小。优化目标为:
[0129]
minp=w
t
ks+l
[0130][0131]
式中:
[0132]
p—总成本,元;m—a阶向量,土壤中a种污染物的初始浓度,mol/m3;n—a阶向量,预处理后土壤中a种污染物的浓度,mol/m3;k—b阶向量,为各种氧化剂投量,l/m3;w—b阶向量,为各种氧化剂价格,元/l;q0—a阶向量,为a种污染物的土壤容许含量,mol/m3;s—修复土壤的体积,m3;yi—第i种氧化剂单位时间的最大允许投加浓度,l/(m3*h);t—转置;l—其他固定费用,元;
[0133]
对于生物修复物理车间,集成学习预测器的输入量为温度t,湿度m,氧气浓度o,n种微生物浓度h;输出量为m种有机质浓度s和堆肥反应速率j。采用上述集成学习预测器进行预测,根据预测结果,选择适当的优化算法不断试算,在堆肥反应速率最大的条件下,寻求堆肥所需最优的工艺参数:温度,湿度,氧气浓度和n种微生物浓度。优化目标为:
[0134]
maxj=f(t,m,o,h)
[0135][0136]
式中:
[0137]
j—堆肥反应速率;t—堆肥温度,℃;t
min
—堆肥最小容许温度,℃;t
max
—堆肥最大容许温度,℃; m—堆肥湿度,%;m
min
—堆肥最小容许湿度,%;m
max
—堆肥最大容许湿度,%;o—氧气浓度,mol/m3; o
min
—氧气最小容许浓度,mol/m3;o
max
—氧气最大容许浓度,mol/m3;h—n阶向量,n种微生物浓度,mol/m3;h
min
—n阶向量,n种微生物最小容许浓度,mol/m3;h
max
—n阶向量,n种微生物最大容许浓度,mol/m3;s—m阶向量,为m种有机质浓度,mol/m3;c0—m阶向量,为m种有机质的土壤容许浓度,mol/m3。
[0138]
对于水气处理与回收物理车间,集成学习预测器的输入量为废气量f1,浆液喷淋量f2,氧化空气流量f3,浆液密度f4,环境温度f5,环境压力f6,循环浆液的ph值f7;输出量为so2 排放浓度y1,石膏排出量y2,浆液池ph值y3,出口气体流量y4,出口气体压力y5,出口气体温度y6。采用上述集成学习预测器进行预测,根据预测结果,选择适当的优化算法不断试算,在使脱硫系统的效益最大,即能量消耗最小;并且副产品石膏的产量最大的条件下,寻求所需最优的工艺参数:废气量,浆液喷淋量,氧化空气流量,浆液密度,环境温度,环境压力,循环浆液的ph值。
[0139]
优化目标:
[0140][0141][0142]
式中:
[0143]
j—能量消耗;p—p个输出;m—m个输入变量;qi,rj—加权系数,表示对输入变量的抑制程度;
[0144]
w(t+i)—设定值,由系统决定(i=1,2

,p);
[0145]
y(t+i)—输出值(i=1,2

,p);
[0146]
δu(t+j)—输入变量的增量;
[0147]
δu
max
—输入变量的最大增量容许值;
[0148]
y1—so2排放浓度,mg/m3;
[0149]y1max
—so2排放浓度考核限值,mg/m3;
[0150]
y2—石膏排出量,m3/h;
[0151]y2min
—石膏最低排出量,m3/h;
[0152]fi
(t+i)—第i个变量(i=1,2

,p);
[0153]fi min
—第i个变量最小容许值(i=1,2

,p);
[0154]fi max
—第i个变量最大容许值(i=1,2

,p);
[0155]yi(t+i)
—第i个输出(i=3

p);
[0156]yi min
—第i个输出最小容许值(i=3,

,p);
[0157]yi max
—第i个输出最大容许值(i=3,

,p);
[0158]
完成所有工艺流程即预处理、生物修复、废气处理与循环后,进行工艺产品测量,
若满足要求,即多环芳烃降解率≥95%,修复周期缩短至≤50天,则工艺产品测试通过,储存工艺参数,结束该套工艺;若工艺产品测试未通过,则需要进行参数优化,重复上述步骤,直到得到满足要求的工艺产品。
转载请注明原文地址: https://www.8miu.com/read-90.html

最新回复(0)