MRJPs对小鼠免疫和肠道微生物调节的模型建立方法及用途与流程

allin2022-07-13  177


memory in aged rats:metabolomics analysis in urine. j agric food chem 2017,65:3151-3159), 促进未青春期雌性小鼠卵巢和卵泡发育(liu, x.; jiang, c.; chen, y.; shi, f.; lai, c.; shen, l. major royal jelly proteins accelerate onset of puberty and promote ovarian follicular development in immature female mice. food science and human wellness 2020,9:338-345.),这些结果表明整体mrjps是蜂王浆中促进生殖和具有抗衰老作用的关键成分。
4.微生物区系几乎生活在人体与外界环境接触中的每一个表面,其中胃肠道((肠道微生物区系))群落代表着人类微生物的最大密度。在过去的十年里,在肠道微生物学和免疫学的交叉点上,突破性的研究证明了动物和它们定居的细菌群落之间的动态互惠关系,这有助于免疫系统的形成和功能维持,而肠道微生态可以通过日常饮食来调节。例如高糖饮食会引发沿菌群-肠-脑轴的炎症。寡甘酸钠((gv-971))可通过影响肠道微生物和氨基酸的代谢来抑制阿尔茨海默病的发展。拟杆菌(bacteroidetes)和厚壁菌(firmicutes)通过影响脂肪酸的代谢而与肥胖密切相关。
5.近年来,人们通过细胞实验和动物模型对蜂王浆的生物学功能进行了大量的研究,发现蜂王浆可能通过与肠道微生物相互作用来增强免疫功能(zahran, a. m.; elsayh, k. i.; saad, k.; eloseily, e. m.; osman, n. s.; alblihed, m. a.; badr, g.; mahmoud, m. h. effects of royal jelly supplementation on regulatory t cells in children with sle. food nutr res 2016,60:32963;chi, x.; liu, z.; wang, h.; wang, y.; wei, w.; xu, b. royal jelly enhanced the antioxidant activities and modulated the gut microbiota in healthy mice. j food biochem 2021,45:e13701)。然而,它们中的大多数都是针对特定疾病模型的,但对mrjps作为预防性的功能食品对免疫和肠道微生物调节功能仍缺乏了解。


技术实现要素:

6.为了克服现有技术的不足,本发明的目的在于提供mrjps对小鼠免疫和肠道微生物调节的模型建立方法及用途,通过一种不同剂量的蛋白质-mrjps喂养小鼠,然后分离脾细胞和肠系膜淋巴细胞做细胞亚群、细胞增殖、细胞因子检测分析,建立mrjps免疫功能的评价方法;同时取小鼠粪便通过16s rrna检测,做肠道微生物区系分析,建立mrjps对肠道微生物调节功能的评价。
7.本发明解决其技术问题所采用的技术方案是:一种mrjps对小鼠免疫和肠道微生物调节的模型建立方法,1)给雌性c57bl/6小鼠灌胃mrjps饲养4周;2)分离脾细胞和肠系膜淋巴细胞做细胞亚群、细胞增殖、细胞因子分析,评价mrjps对小鼠免疫力的调节功能;3)取小鼠粪便16s rrna检测,做肠道微生物区系分析,评价mrjps对肠道微生物调节调节功能。
8.所述的mrjps的冻干粉中糖基化蛋白含量在80%以上,作sds-page电泳定性检测,显示mrjp1、mrjp2、mrjp3和mrjp5条带,分子量大小为25-87 kda。
9.所述的方法,步骤1)中,分别灌胃0、125、250、500 mg/kg的mrjps 4周。
10.所述的方法,步骤2)中,所述的细胞亚群分析:分离脾细胞和肠系膜淋巴细胞,用抗cd16/cd32抗体封闭细胞,用荧光标记的抗cd3、抗f4/80和抗nk1.1抗体染色,之后用流式细胞仪获取数据,用flowjo 10.0软件进行分析。
11.所述的方法,步骤2)中,所述的细胞增殖分析:co2安乐处死小鼠,无菌环境下摘取脾脏和肠系膜淋巴结,并将脾细胞和肠系膜淋巴细胞接种于96孔圆底培养板中,分别用cona、抗cd3/可溶性抗cd28单抗或lps刺激72h,在最后3小时,将cck-8溶液加入到每个孔中,在结束时使用酶标仪测定细胞增殖。
12.所述的方法,步骤2)中,所述的细胞因子测定:收集脾脏和肠系膜淋巴结,用cona或抗cd3/cd28处理的细胞48h,测定t细胞分泌ifn-γ、il-2、il-4和il-17;或脂多糖(lps)处理24h,测定炎性细胞因子il-1β和il-6。
13.所述的方法,步骤3)中,所述的肠道微生物区系分析,从小鼠的粪便样本中提取总基因组dna,做16s rrna基因测序测,比较对照组和mrjps组小鼠的粪便微生物组成、相对丰度、群落多样性,肠系膜淋巴细胞分泌的细胞因子与细菌属之间的相关性。
14.mrjps在制备免疫和肠道微生物调节功能性食品中的用途,1)增强免疫力,包括增强有丝分裂原刺激的脾细胞增殖,增加有丝分裂原诱导的脾细胞和肠系膜淋巴细胞中t细胞分泌产生的il-2,抑制ifn-γ和il-17a的产生,同时抑制脾细胞和肠系膜淋巴细胞产生促炎细胞因子il-1β和il-6;2)促进增加益生菌的丰度,包括增加肠道微生物区系的α-多样性和乳酸菌(lactobacillus)、普氏菌(prevotella)、双歧杆菌(bifidobacterium)和拟杆菌(bacteroides)的相对丰度,降低厚壁菌(firmicutes)、变形杆菌(proteobacteria)和放线菌(actinobacteria)的丰度。
15.所述的用途,所述的mrjps的冻干粉中糖基化蛋白含量在80%以上,sds-page电泳定性检测,显示mrjp1、mrjp2、mrjp3和mrjp5条带,分子量大小为25-87 kda。
16.所述的用途,所述的mrjps以新鲜蜂王浆为原料,经超滤膜分离和冻干后得到。
17.本发明的有益效果是:建立了基于免疫学和微生物组学的蜂王浆中关键核心活性成分mrjps冻干粉的对免疫学和肠道微生态调节功能的评价方法,即通过给雌性c57bl/6小鼠灌胃mrjps饲养4周,分离脾细胞和肠系膜淋巴细胞做细胞亚群、细胞增殖、细胞因子分析,明确mrjps具有增强小鼠免疫力的功能;取小鼠粪便16s rrna检测,做肠道微生物区系分析,明确mrjps具有促进肠道益生菌增殖的功能。本发明为mrjps免疫功能和调节肠道微生态提供了一种新的评价方法,为mrjps作为一种增强免疫功能和促进肠道益生菌增殖的功能食品提供了科学依据和应用方法。
附图说明
18.图1是采用sds-page 对mrjps冻干粉进行观察图;其中,m:蛋白标记物,mrjps:可溶性蜂王浆蛋白,bsa:四型牛血清白蛋白。
19.图2 是mrjps对小鼠体重和脏器重量的影响图;其中,各部分如下:(a)小鼠体重变化,(b)肝脏重量,(c)脾脏重量,(d)肝脏指数(肝脏重量/体重)和(e)脾脏指数(脾脏重量/体重)。
20.图 3 是采用流式细胞术对淋巴细胞亚群进行分类和计数图;其中,各部分如下:(a)脾细胞中t细胞和nk细胞的分析过程,(b)脾细胞中巨噬细胞(f4/80)分析过程,(c)肠系膜淋巴结细胞中t细胞和nk细胞分析过程,(d)肠系膜淋巴结细胞中巨噬细胞(f4/80)分析过程。
21.图4是补充mrjps对小鼠脾脏和肠系膜淋巴结细胞数量的影响图;其中,各部分如下:在第28天收集不同剂量mrjps处理的小鼠脾脏(a-f)和肠系膜淋巴结(h-g),测定免疫细胞群,包括t细胞(cd3
+
、a、d和h)、nk细胞(nk1.1、b、e和i)和巨噬细胞(f4/80、c、f和g)。(与对照组相比较:
*
p《 0.05;
**
p《 0.01;与m125相比:
#
p《 0.05;
##
p《 0.01)。
22.图5是mrjps对小鼠脾细胞和肠系膜淋巴细胞增殖的影响图;其中,各部分如下:在第28天收集不同剂量mrjps处理的小鼠脾脏(a-c)和肠系膜淋巴结(d-f),观察cona(a和d)、抗cd3/cd28抗体(b和e)和lps(c和f)对小鼠脾细胞和肠系膜淋巴细胞增殖的影响。(与对照组相比较:
*
p《 0.05;
**
p《 0.01;与m125相比:
#
p《 0.05;
##
p《 0.01)。
23.图6是mrjps对小鼠脾淋巴细胞分泌细胞因子的影响图;其中,各部分如下:在第28天收集不同剂量mrjps处理的小鼠脾脏,观察cona(a-c)和抗cd3/cd28抗体(d-g)刺激的脾淋巴细胞分泌t细胞因子的能力(与对照组相比较:
*
p《 0.05; **
p《 0.01;与m125相比:
#
p《 0.05;
##
p《 0.01)。
24.图7是mrjps对小鼠肠系膜淋巴细胞分泌细胞因子的影响图;其中,各部分如下:在第28天收集不同剂量mrjps处理的小鼠肠系膜淋巴结,观察cona(a-b)和抗cd3/cd28抗体(c-e)刺激的肠系膜淋巴细胞分泌t细胞因子的能力。(与对照组相比较:
*
p《0.05; **
p《0.01;与m125相比:
#
p《0.05;
##
p《 0.01)。
25.图8是mrjps对小鼠肠系膜淋巴细胞中促炎细胞因子分泌的影响图;其中,各部分如下:在第28天取不同剂量mrjps处理的小鼠脾脏(a、b)和肠系膜淋巴结(c),检测lps刺激的淋巴细胞产生促炎分泌细胞因子的情况。(与对照组相比较:
*
p《 0.05;
**
p《 0.01;与m125相比:
#
p《 0.05;
##
p《 0.01)。
26.图9是粪便微生物群落的α-多样性分析图;其中,各部分如下:(a)维恩图,(b)α-多样性指数比较,(c、d)稀疏曲线[以均值
±
标准误(n=6)表示]。
[0027]
图10是粪便微生物群落的β-多样性分析图;其中,各部分如下:(a)主成分分析,(b)两组的anosim分析[r值接近1.0表示组间(n=6)的差异大于组内的差异]。
[0028]
图11是小鼠肠道微生物群落在门水平上相对丰度的变化图;其中,各部分如下:(a)来自不同处理的粪便微生物的柱状图,(b)mrjps处理影响了特定的细菌门[均值
±
标准误(n=6),与对照组相比较:
*
p《 0.05;
**
p《 0.01]。
[0029]
图12是小鼠肠道微生物群落在属水平上相对丰度的变化图;其中,各部分如下:(a)来自不同处理的粪便微生物柱状图,(b)mrjps治疗影响到特定的细菌属[均值
±
标准误(n=6)。与对照组相比较:
*
p《 0.05;
**
p《 0.01]。
[0030]
图13是小鼠肠系膜淋巴细胞分泌的细胞因子与细菌属之间的相关性分析图;
其中,(n=6)与对照组相比较:
*
p《 0.05;
**
p《 0.01;
***
p《 0.001。
具体实施方式
[0031]
下面结合实施例和附图,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明范围。
[0032]
实施例1:mrjps冻干粉质量分析mrjps以鲜蜂王浆为原料,采用超滤分离设备和工艺分离,经冷冻干燥制备而成,在-20
°
c下冷冻保存。对mrjps进行sds-page电泳定性分析分析, 显示显示mrjp1、mrjp2、mrjp3和mrjp5等4条以上的条带,分子量大小为25-87 kda(图1)。
[0033]
采用定氮法作mrjps冻干粉总蛋白定量检测,其总蛋白含量平均在75.85%;采用分光度法检测,其总糖含量为9.35%;采用液相色谱法定量检测,10-had含量为0.86%。mrjps属于n-连接糖基化位点的糖蛋白,由蛋白质和糖链组成,因此推测mrjps冻干粉糖蛋白含量在85%以上。
[0034]
实施例2:mrjps对增强小鼠免疫功能的评价取雌性c57bl/6小鼠(6~8周龄),所有小鼠都饲养在一个12h:12h暗:光周期的环境中。将小鼠随机分为4组(n=6只/组):(1)对照组(ck):给予mrjps 0 mg/kg灌胃;(2)m125组:小鼠给予mrjps 125 mg/kg灌胃;(3)m250组:小鼠给予mrjps 250 mg/kg灌胃;(4)m 500:小鼠给予mrjps 500 mg/kg灌胃。对照组每天给予相应剂量的生理盐水,(2)
‑ꢀ
(4)组小鼠每天被给予相应剂量的mrjps,并每周称重一次,直到实验结束。所有实验程序均按照伦理学要求报伦理委员会批准。
[0035]
(1)mrjps对体重和脏器重量变化的影响:在小鼠饲养4周后称重,没有发现四组小鼠的体重有任何差异(图2a部分)。将小鼠施行安乐死,测定脾脏和肝脏重量及其指数(脏器重量/体重),发现肝脾重量(图2b部分和c部分)和器官指数(图2d部分和e部分)在不同组间无显著差异。
[0036]
(2)mrjps对小鼠脾脏和肠系膜淋巴结(mln)细胞群的影响检测:在小鼠饲养4周后,将小鼠施行安乐死,分离脾细胞和肠系膜淋巴细胞。用抗cd16/cd32抗体封闭细胞,然后用荧光标记的抗cd3、抗f4/80和抗nk1.1抗体进行染色。之后用流式细胞仪获取数据,用flowjo 10.0软件进行分析。(图3a部分)脾细胞中t细胞和nk细胞的分析过程,(图3b部分)脾细胞中巨噬细胞(f4/80)分析过程,(图3c部分) 肠系膜淋巴结细胞中t细胞和nk细胞分析过程,(d) 肠系膜淋巴结细胞中巨噬细胞(f4/80)分析过程。细胞亚群分析结果显示, 在脾脏中,m500组t细胞(cd3
+
)总的数量和百分比显著升高(图4a部分和d部分)。但对nk(图4b部分和e部分)细胞和巨噬细胞(图4c部分和f部分)的产生未见明显影响。而在肠系膜淋巴结中,补充mrjps促进了t(cd3
+
)细胞的百分比(图4h部分),同时降低了巨噬细胞的百分比(图4g部分)。
[0037]
(3)mrjps对免疫细胞增殖的影响检测:取(2)所述小鼠脾细胞和肠系膜淋巴细胞,将细胞接种于96孔圆底培养板中,每孔接种3
×
105个细胞,分别用cona (1.5
ꢀµ
g/ml)、抗cd3(5
µ
g/ml)、可溶性抗cd28单抗(1
ꢀµ
g/ml)或lps(1
ꢀµ
g/ml)刺激72h。在最后3h,将cck-8溶液加入到每个孔中,并在结束时使用酶标仪测定细胞增殖。细胞增殖公式为:[(药物处理样品吸光度-空白组吸光度)/(对照样品吸光度-空白组吸光度)]
×
100%。
[0038]
在脾脏方面,我们发现m250和m500组促进了cona(图5a部分)、抗cd3/cd28(图5b部分)和lps(图5c部分)刺激的脾淋巴细胞增殖。而在肠系膜淋巴结,喂食不同剂量的mrjps对各种有丝分裂原刺激的淋巴细胞增殖未见影响(图5d-f部分)。
[0039]
(4)mrjps对细胞因子的影响测定:饲养4周后,取(2)所述小鼠脾细胞和肠系膜淋巴细胞,用cona或抗cd-3/cd-28处理细胞48h,测定t细胞分泌ifn-γ、il-2、il-4和il-17或脂多糖(lps)处理24h,测定促炎细胞因子il-1β和il-6。
[0040]
mrjps对脾脏和肠系膜淋巴结t细胞分泌细胞因子的影响(图6、图7):在脾脏方面,m500处理小鼠在cona或抗cd3/cd28抗体刺激的脾细胞产生的il-2高于对照组小鼠(图6a部分和d部分)。有丝分裂原刺激的脾细胞产生ifn-γ(图6b部分和e部分)和il-17a(图6c部分和f部分)的水平m250和m500组均明显低于对照组,但抗cd3/cd28刺激的脾细胞产生il-4的水平在四组间无明显差异(图6g部分)。对于肠系膜淋巴细胞,m500处理小鼠在cona(图7a部分)或抗cd3/cd28抗体(图7c部分)刺激的t细胞产生的il-2比对照组小鼠多。此外,m250和m500 组小鼠在cona或抗cd3/cd28抗体刺激下的脾细胞产生的ifn-γ显著低于对照组的小鼠(图7b部分和d部分)。但il-4的产生在四组间无明显差异(图7e部分)。以上结果显示,补充mrjps可能通过调节细胞因子的产生从而改善机体的免疫功能。
[0041]
mrjps对脾脏和肠系膜淋巴结产生炎性细胞因子的影响:在脾脏方面,m250 和m500 组小鼠经lps刺激的脾细胞产生il-1β(图8b部分)和il-6(图8a部分)的量均低于对照组。此外,m250 和m500组小鼠的肠系膜淋巴细胞分泌的il-6水平低于对照组(图8c部分)。以上结果显示,补充mrjps可抑制淋巴细胞分泌促炎细胞因子的产生。
[0042]
实施例3:mrjps对促进小鼠肠道益生菌增殖的功能的评价由于500 mg/kg体重的mrjps可以激发小鼠最有效的外周和局部免疫免疫反应,所以后面采用该剂量进行肠道微生物区系分析。
[0043]
在小鼠喂养4周后,取小鼠新鲜粪便标本,-80
°
c保存直至dna被提取。采用ezna
®
soil dna 试剂盒和步骤提取从小鼠的粪便样本中提取总基因组dna。用正向引物(5
‘‑
actcctacgggaggcagca-3’)和反向引物(5
‘‑
ggactachvggggtwtctaat-3’)分别扩增出16s rrna基因v3-v4区。ap-gx-500dna凝胶提取试剂盒提取纯化经2%琼脂糖凝胶电泳分离的pcr产物,。文库建立后,在miseq测序平台上对获得的产物进行测序。通过最大命中分类选择将每个样品的修饰和安装序列统一到greengene 16s rrna数据库集合10中,以对qiime中的分类丰度进行分类。多路解编后,我们将fastp(0.19.6)过滤后的质量和flash(v1.2.11)生成的序列组合在一起。然后使用dada2插件对qiime2管道中的高质量序列进行去噪,并推荐合适的参数,根据样本纠错后获得单核苷酸分辨率,通常将dada2去噪序列称为asv。每个样本的序列号都被细化到适当的数量,目的是将测序深度对α-和β-多样性造成的误差降到最低。α-多样性用于估计微生物群落多样性,包括微生物群落丰富度(chao1)和多样性(shannon和simpson)。基于bray_curtis算法产生了β分集,并根据主坐标分析进行了阐述。
[0044]
数据处理采用单因素方差分析,并采用tukey的多重比较分析3组或3组以上组间差异的显著性;16s测序数据、chao指数、shannon指数和simpson指数由r语言生成,并计算用于α多样性评价。应用graphpad prism 8.0软件对已知的肠道细菌与肠系膜淋巴细胞产生的细胞因子进行相关性分析。p《0.05被认为差异有统计学意义。
[0045]
(1)小鼠肠道微生物群落的变化
为了确定mrjps是否影响肠道微生物群落组成,将m500和对照的小鼠粪便样本进行16s rrna基因测序,得到了1,016,014个序列。这些读数被聚为7122个asv,而2258个(31.7%)和3604个(50.6%)asv分别是对照组和mrjps组小鼠所特有的(图9a部分)。
[0046]
稀疏曲线反映了测序深度对观测样本多样性的影响。如图9b部分所示,随着测序数量的增加,可能会发现新的微生物群类型。文中所给出的测序深度覆盖了所有样品中的大部分微生物多样性(图9c部分)。因此,这项研究的测序深度应该足以揭示样品中微生物群的丰度信息。为此,确定了chao、shannon和simpson多样性作为评估微生物群落丰富度和多样性的替代方法。与asvs序列的稀疏曲线数据一致,m500组的chao指数与对照组相比增加(图9d部分)。此外,还评估了两组肠道菌群的simpson和shannon多样性指数。如图9d部分所示,灌胃mrjps增加了α多样性指数。这些结果表明,补充mrjps可以提高微生物群落的多样性和丰富度。在asv水平上,pcoa分析(图10部分)显示,mrjps组与对照组的粪便微生物有显著差异(anosim,p=0.003,r=0.907)。
[0047]
此外,对两组的微生物组成进行了深入的分析,结果表明,两组的优势菌门均为厚壁菌门(firmicutes)和拟杆菌门(bacteroides)(图11a部分)。与对照组相比,mrjps组拟杆菌门丰度较高,而厚壁菌门丰度较低(p《0.05)(图11b部分),且mrjps组厚壁菌/拟杆菌的比值低于对照组(p《0.05)。此外,饲喂mrjps的小鼠显著减少了放线菌门(actinobacteria)和变形杆菌门(proteobacteria)的丰度。接下来,利用多重序列比对的方法,在属水平上研究了对照组和mrjps组中属水平上物种的系统发育关系。图12a部分显示了两组间前10个属的相对丰富度,其中allobaculum在肠道微生物群的组成中占主导地位(图12b部分)。添加mrjps提高了乳酸菌(lactobacillus)、普氏杆菌(prevotella)、双歧杆菌(bifidobacterium)和拟杆菌(bacteroides)等益生菌的相对丰度,但不影响allobaculum和akkermansia的相对丰度。根据以上数据推测,mrjps可能通过调节肠道菌群的丰度来影响宿主的免疫应答。
[0048]
肠道菌群在免疫动态平衡和维持健康的免疫系统中起着核心作用。肠道微生物群落可以调节免疫系统的成熟和稳定,微生物群落失调可能导致免疫功能障碍,从而导致炎症相关疾病的发生和发展。目前16s rdna扩增序列测定是研究肠道微生物群落组成最常用的方法。厚壁菌和拟杆菌比例的改变在能量吸收和肥胖的发生发展中起着至关重要的作用,高比例可能促进肥胖宿主的能量聚集。放线菌是细菌中最主要的类群,是新生物活性物质的丰富来源,能产生多种生物活性物质,包括抗菌、抗病毒、抗癌和神经保护剂。但放线菌中也含有病原菌,如牛放线菌在口腔、口腔、牙龈等部位产生损伤时,可侵入组织内,引起放线菌感染。变形杆菌的增加是一种生态失调的标志,也是一种潜在的疾病诊断标准,例如从小鼠粪便中分离出的两种肠杆菌科细菌(肺炎克雷伯氏菌和米雷氏变形杆菌)的转移足以引起受体小鼠的结肠炎,而小鼠本身不存在任何遗传免疫缺陷。而双歧杆菌属于益生菌,可通过免疫介导的相互作用参与维生素的生物合成和宿主营养代谢的生理功能。本实验结果显示,补充mrjps增加拟杆菌的丰度,降低厚壁菌/拟杆菌的比值、以及放线菌和变形杆菌的丰度,这可能有助于纠正肠道微生物群落失调,从而减轻肠道炎症。
[0049]
(2)肠道微生物群落与肠系膜细胞因子水平的相关性分析选取两组间有显著差异的结果,包括肠系膜淋巴结分泌的细胞因子il-2、il-4、il-6和ifn-γ,在属水平上与肠道菌群进行可能的相关性分析。如图13所示,细胞因子il-6
和ifn-γ与乳杆菌、普氏杆菌和双歧杆菌呈负相关,而拟杆菌与ifn-γ和il-4呈显著负相关。此外,肠系膜淋巴结细胞分泌的il-2与乳杆菌、双歧杆菌、拟杆菌呈显著正相关,allobaculum与肠系膜淋巴细胞产生的ifn-γ呈正相关,肠系膜淋巴细胞分泌的il-4与cf231呈正相关。以上结果显示,补充mrjps可降低了促炎细胞因子水平,包括th1型相关细胞因子ifn-γ、th17相关细胞因子il-17、il-6和il-1β。
[0050]
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。
[0051]
上述描述中的实施方案可以进一步组合或者替换,且实施方案仅仅是对本发明的优选实施例进行描述,并非对本发明的构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域普通技术人员对本发明的技术方案做出的各种变化和改进,均属于本发明的保护范围。本发明的保护范围由所附权利要求及其任何等同物给出。
转载请注明原文地址: https://www.8miu.com/read-624.html

最新回复(0)