用于平视显示器(hud)的具有p偏振辐射的投影装置
1.本发明涉及一种用于平视显示器的投影装置及其用途。
2.现代汽车越来越多地配备有所谓的平视显示器(hud)。用投影仪,通常在仪表板的区域中,将图像投影到挡风玻璃上,在那里反射,并且被驾驶员感知为挡风玻璃后方的虚拟图像(由驾驶员看来)。如此,能够将重要的信息,例如当前的行驶速度、导航或警告提示,投影到驾驶员的视野中,驾驶员能够感知到所述信息而不必将他的视线从行车道移开。因此,平视显示器能够为提高交通安全做出显著贡献。
3.hud投影仪主要用s偏振辐射来运行并且以大约65%的入射角照射挡风玻璃,这接近于空气-玻璃-过渡的布鲁斯特角(对于钠钙玻璃而言56.5
°
)。在此,出现了这样的问题,即,投影仪图像在挡风玻璃的两个外表面上被反射。由此,除了期望的主图像之外,还出现略微错位的副图像,所谓的重影图像("幻像")。该问题通常通过如下方式来减轻,即,所述表面彼此以一定的角度来布置,特别是通过使用楔形的中间层用于层压形成为复合玻璃板的挡风玻璃,从而使得主图像和重影图像彼此叠加。具有hud用楔膜的复合玻璃例如由wo2009/071135a1,ep1800855b1或ep1880243a2已知。
4.楔膜是昂贵的,因此这种hud用复合玻璃板的制造是相当昂贵的。因此存在对不需要楔膜而能适用于挡风玻璃的hud-投影装置的需求。例如,可以用在玻璃板表面上基本不被反射的p偏振辐射来运行hud投影仪。取而代之地,挡风玻璃具有反射涂层作为p偏振辐射的反射面。de102014220189a1公开了这样的用p偏振辐射来运行的hud投影装置。作为反射结构,尤其建议厚度为5 nm至9 nm的单层金属层,例如由银或铝构成。wo2019046157a1还公开了一种具有p偏振辐射的hud,其中使用具有至少两个金属层的反射涂层。
5.us2017242247a1公开了另一种hud投影装置,其具有用于p偏振辐射的反射涂层。该反射涂层可以包括一个或多个导电银层,此外介电层。然而,反射光谱在相关光谱范围中具有明显弯曲的形状,使得反射比相对较强地依赖于波长。这在hud投影的色彩中性的显示方面是不利的。
6.wo2020083649a1公开了一种用于交通工具的投影装置,其包括具有反射涂层的交通工具侧窗玻璃和投影仪,其中投影仪的辐射主要是p偏振的并且反射涂层适合反射p偏振辐射。
7.hud 中显示的信息,如速度或与前方交通工具的距离,通过集成在交通工具中的驾驶辅助系统来确定。随着自动驾驶交通工具的不断发展,这种驾驶辅助系统变得越来越重要,因此新开发的交通工具装配玻璃当然必须与之兼容。现代驾驶辅助系统通常也用术语adas(高级驾驶辅助系统)来指称,并利用例如超声波、雷达、激光雷达和/或摄像头技术。根据传感器的类型和应用,它们也安装在交通工具装配玻璃的区域中,例如在交通工具挡风玻璃的后面。在此应注意的是,相应的交通工具装配玻璃具有良好的对传感器要检测的辐射的透射率。此外,这些传感器用偏振对比度工作,即,它们利用不同的 s 和 p 偏振辐射透射率。对此的量度是所谓的偏振比,即 p 偏振辐射强度与 s 偏振辐射强度的商。交通工具装配玻璃上的可能的涂层,例如加热层或反射涂层,通常伴随着降低的透射率。为了确保这种涂层后面的传感器的足够功能,例如可以局部去除涂层。这导致制造方法中额外的
工艺步骤和成本。此外,被剥离的区域是反射可发觉的。
8.因此,需要具有反射涂层的 用于hud 的投影装置,其对于 p 偏振辐射具有高反射率,同时对于位于装配玻璃后面的摄像头系统具有足够高的透射率和高偏振比。本发明的目的在于提供这样的改进的投影装置。
9.根据本发明,本发明的目的通过根据权利要求1的投影装置得以实现。优选的实施方案由从属权利要求得知。
10.根据本发明,使用p偏振辐射来产生hud图像,并且该复合玻璃板具有充分反射p偏振辐射的反射涂层。因为对于hud投影装置而言典型的约65
°
的入射角相对接近空气-玻璃-过渡的布鲁斯特角(56.5
°
,钠钙玻璃),所以p偏振辐射几乎不被玻璃板表面反射,而主要是被导电涂层反射。因此,不出现重影图像或几乎不能被感知,从而可以省去使用昂贵的楔膜。此外,hud图像对于偏振选择性太阳镜的佩戴者而言也是可识别的,所述偏振选择性太阳镜典型地仅允许p偏振辐射通过并且阻挡s偏振辐射。根据本发明的反射涂层在450 nm至650 nm光谱范围内产生对p偏振辐射的高反射率,这与hud显示相关(hud-投影仪典型地以473 nm、550 nm和630 nm (rgb)波长工作)。由此实现了高强度的hud图像。单层银层不会过于减少透光率,因此该玻璃板可以继续用作挡风玻璃。根据本发明的上部和下部介电层序列的光学厚度之比产生平滑的反射光谱,从而确保了色彩中性的显示。有利的反射性能,尤其是光谱的均匀性甚至延伸超出hud相关的光谱范围至400 nm至680 nm的光谱范围,从而除了良好的hud显示之外还实现了玻璃板的正面的整体印象,而没有干扰性颜色失真。这是本发明的大的优点。除了挡风玻璃的有利的hud性质之外,它还具有优化的传感器兼容性,尤其是摄像头兼容性。在发明人的实验中,在上部介电层或层序列的光学厚度与下部介电层或层序列的光学厚度之比为2.10至3.20的情况下已经产生有利的p偏振透射光与s偏振透射光之比。反射涂层不包括其折射率小于1.9的介电层。因此,反射涂层的所有介电层具有至少1.9的折射率。
11.根据本发明的用于平视显示器(hud)的投影装置至少包括具有反射涂层的挡风玻璃和投影仪。如hud中常见的那样,投影仪照射挡风玻璃的一个区域,在该区域中,辐射向观看者(驾驶员)的方向反射,由此产生一个虚拟图像,观看者感知到由他看来在挡风玻璃后方的该虚拟图像。挡风玻璃的可被投影仪照射的区域被称为hud区域。投影仪的射束方向可以典型地通过反射镜来改变,尤其是竖直地改变,以使投影与观看者的身体尺寸相匹配。在给定的反射镜位置处观看者的眼睛必须位于其中的区域被称为眼动范围窗口。该眼动范围窗口可以通过调整反射镜被竖直地移动,其中由此可及的整个区域(也就是说所有可能的眼动范围窗口的叠加)被称为眼动范围。位于眼动范围内的观看者能够感知到该虚拟图像。因此自然意味着,观看者的眼睛,而非例如整个身体,必须位于眼动范围内。
12.根据本发明的用于hud的投影装置特别适用于将传感器,尤其是adas系统领域中的传感器,安装在挡风玻璃上。术语 adas 系统是指现代驾驶辅助系统,它使用例如基于超声波、雷达、激光雷达和/或摄像头技术的环境传感器。这些或其他传感器中的一个或多个可以安装在挡风玻璃的区域中。
13.这里使用的hud领域的专业术语是本领域技术人员通常已知的。有关详细说明,可参考慕尼黑工业大学计算机科学学院的alexander neumann的论文“simulationsbasierte messtechnik zur pr
ü
fung von head-up displays”(慕尼黑:慕尼黑工业大学大学图书
馆,2012),尤其是第2章“das head-up display”。
14.所述挡风玻璃包括一个外玻璃板和一个内玻璃板,它们通过一个热塑性中间层彼此连接。挡风玻璃用于在交通工具的窗户开口中将内部空间相对于外部环境分隔开。在本发明意义上,内玻璃板是指挡风玻璃的朝向交通工具内部空间的玻璃板。外玻璃板是指朝向外部环境的玻璃板。所述挡风玻璃优选是机动车、尤其是乘用车或载重汽车的挡风玻璃。
15.挡风玻璃具有上棱边和下棱边以及在它们之间延伸的两个侧棱边。上棱边是指提供用于在安装位置下向上指向的那个棱边。下棱边是指提供用于在安装位置下向下指向的那个棱边。上棱边经常也被称为顶棱边,和下棱边被称为发动机棱边。
16.外玻璃板和内玻璃板各自具有一个外侧和一个内部空间侧表面和在它们之间延伸的、环绕的侧棱边。在本发明意义上,外侧表面是指这样的主面,其提供用于在安装位置下朝向外部环境。在本发明意义上,内部空间侧表面是指这样的主面,其提供用于在安装位置下朝向内部空间。外玻璃板的内部空间侧表面和内玻璃板的外侧表面彼此面对并通过热塑性中间层彼此连接。
17.投影仪对准挡风玻璃的hud区域。投影仪的辐射主要是p偏振的。所述反射涂层适于反射p偏振辐射。由此,由投影仪辐射产生一个虚拟图像,交通工具的驾驶员可以感知到由他看来在挡风玻璃后方的该虚拟图像。
18.根据本发明的反射涂层具有恰好一个基于银的导电层。恰好一层基于银的导电层意味着根据本发明的反射涂层仅包含这一个基于银的导电层并且不包含其他基于银的层。这还包括,根据本发明,在反射涂层于其上的基底上,在根据本发明的反射涂层的下方和上方均不存在含银层。在该导电层的下方布置下部介电层或层序列。同样地,在该导电层的上方布置上部介电层或层序列。所述上部和下部的介电层或层序列各自具有至少1.9的折射率。
19.在本发明范围内,折射率原则上是基于550 nm的波长给出的。光学厚度是几何厚度与折射率(在550 nm处)的乘积。层序列的光学厚度作为各个单层的光学厚度的总和来计算。例如,可以借助于椭圆偏光法来确定折射率。椭偏仪是商购可得的,例如从sentech公司。上部或下部介电层的折射率优选通过首先将其作为单层沉积在基底上,然后借助于椭圆偏光法测量折射率来确定。为了确定上部或下部介电层序列的折射率,将层序列的层分别作为单层单独地沉积在基底上,然后借助于椭圆偏光法确定折射率。根据本发明,对于这些单层中的每一个可以实现至少1.9的折射率。具有至少1.9的折射率的介电层及其沉积方法是薄层领域的技术人员已知的。优选使用物理气相沉积的方法,特别是磁控溅射。
20.如果第一层布置在第二层的上方,则在本发明意义上这意味着,第一层布置得比第二层更远离在其上施加该涂层的基底。如果第一层布置在第二层的下方,则在本发明意义上这意味着,第二层布置得比第一层更远离基底。
21.如果一个层是基于一种材料形成的,则该层大部分由该材料构成,尤其是除了可能的杂质或掺杂物之外基本上由该材料构成。
22.根据本发明,上部介电层或层序列的光学厚度与下部介电层或层序列的光学厚度之比为2.10至3.20。已经表明,光学厚度的这种不对称性产生明显更平滑的对p偏振辐射的反射光谱,从而在整个相关光谱范围(400 nm至680 nm)内存在相对恒定的反射比。由此确保了hud投影的色彩中性的显示和玻璃板的色彩中性的整体印象。此外,在光学厚度的这个
小比率范围内,已经显示出特别有利的p偏振光与s偏振光的偏振比。在此,将偏振比定义为 p 偏振光的透射率与 s 偏振光的透射率之比。根据本发明的反射涂层位于其光束路径中的传感器,例如摄像头,只能感知由反射涂层透射的光,由此当使用挡风玻璃后面的传感器时需要高透射率。特别是,与 s 偏振光相比,p 偏振光的透射率应占主导地位,并且应尽可能高。在此,为了避免在潮湿路面条件下出现的限制摄像头视线的眩光效应,透射的光的偏振比是决定性的。为了抑制这些眩光效应,p 偏振光的透射率必须大于 s 偏振光的透射率。良好的 hud 图像品质的要求需要反射涂层上p 偏振光的高反射比,这与摄像头应用所需的高透射率相反。发明人已经发现,在根据本发明的光学厚度比内,可以实现足以用于hud应用的p偏振光的反射率,同时穿过挡风玻璃透射的光具有有利的p-偏振光与s-偏振光之比。因此,可在所提及的光学厚度比的窄极限内获得针对摄像头应用优化的用于平视显示器的投影布置。
23.根据本发明的光学厚度之比计算为上部介电层或层序列的光学厚度(被除数)除以下部介电层或层序列的光学厚度(除数)的商。
24.在一个优选的实施方案中,上部介电层或层序列的光学厚度与下部介电层或层序列的光学厚度之比为2.14至3.10,优选2.20至3.10,特别优选2.30至2.98,特别是2.50至2.97。由此获得特别好的结果。
25.优选地,借助于根据本发明的反射涂层实现的p偏振光与s偏振光的偏振比在55
°
的透射角下至少为1.28,在61
°
的透射角下至少为1.41和/或在67
°
的透射角下至少为1.59。透射角是透射穿过挡风玻璃的辐射的角度。透射角被确定为挡风玻璃表面法线与透射出射辐射之间的角度。提供在挡风玻璃后面的传感器优选地提供在反射涂层被优化的透射角中。所提及的偏振比的极限值与相关摄像头系统的技术规格相对应。特别优选地,实现偏振比的所提及的极限值中的至少两个。特别地,由根据本发明的反射涂层实现偏振比的所有三个所提及的极限值。这是有利的,因为以这样的方式可以以不同的透射角使用摄像头。
26.优选地,根据本发明的投影装置的挡风玻璃包括传感器区域。传感器可以安装在该传感器区域中,使得辐射穿过反射涂层并被传感器检测到。投影装置优选地在制造时也具有传感器,其在传感器区域中检测穿过挡风玻璃的辐射。然而,根据本发明的投影装置的挡风玻璃也有利于改装传感器或使用安置在仪表板上的摄像头(也称为行车记录仪)。根据本发明的反射涂层在其与摄像头系统的兼容性方面被优化,由此可以在任意位点提供摄像头。可以省略摄像头窗口的去除覆盖。
27.如果根据本发明的投影装置具有传感器,则反射涂层位于传感器的光路中。在此,传感器通常提供在挡风玻璃后面,即在挡风玻璃的安装状态下在交通工具内部空间中,并且优选地邻接内玻璃板的外侧固定。传感器优选地是超声波传感器、雷达传感器、激光雷达传感器和/或摄像头。传感器特别优选地是检测光谱可见范围内的辐射的摄像头。根据本发明的反射涂层达到了相关摄像头系统规范中对于p偏振透射光与s偏振透射光之比所要求的极限值。
28.反射涂层优选施加在两个玻璃板的朝向中间层的表面上,即外玻璃板的内部空间侧表面或内玻璃板的外侧表面上。或者,也可以将反射涂层布置在热塑性中间层内,例如施加在载体薄膜上,所述载体薄膜布置在两个热塑性的连接薄膜之间。反射涂层是透明的,这在本发明意义上意味着,其在可见光谱范围中具有至少70%、优选至少80%的平均透射率,并
且由此基本上不限制透过玻璃板的透视。部分区域或甚至大面积的区域可以具有反射涂层,并且挡风玻璃可以基本上在整个表面上具有反射涂层,由于制造原因这可能是优选的。在本发明的一个实施方案中,玻璃板表面的至少80%具有根据本发明的反射涂层。尤其是,除了作为通讯窗口、传感器窗口或摄像头窗口应确保电磁辐射透射穿过挡风玻璃并因此不具有反射涂层的环绕的边缘区域和任选局部的区域以外,反射涂层施加在玻璃板表面的整个表面上。环绕的未经涂覆的边缘区域例如具有至多20 cm的宽度。其防止了反射涂层与周围的气氛直接接触,从而保护在挡风玻璃内部中的反射涂层免受腐蚀和损坏。
29.由于该导电的银层,根据本发明的反射涂层具有ir反射性能,因此其用作防晒涂层,其通过反射热辐射减少了交通工具内部空间的加热。如果使反射涂层电接触,使得电流流过该反射涂层,从而加热该反射涂层,则该反射涂层也可以用作加热涂层。
30.具有反射涂层的挡风玻璃优选地在400nm至680nm的光谱范围内具有至少15%,特别优选至少20%的对p偏振辐射的平均反射比。由此产生足够高强度的投影图像。在此,反射比是用对内部空间侧的表面法线成65
°
的入射角来测量的,该角度大约相应于由常见投影仪产生的照射。绘制400 nm到680 nm的光谱范围以表征反射性能,因为观看者的视觉印象主要由该光谱范围决定。此外,它涵盖了与hud显示相关的波长(rgb:473 nm、550 nm、630 nm)。在相对简单的层结构的情况下的该高反射比是本发明的一大优点。如果在400nm至680nm的整个光谱范围内的反射比为至少15%,优选至少20%,从而在给出的光谱范围内的反射比没有一个地方低于所给出的值时,获得特别好的结果。
31.反射比描述了被反射的总入射辐射的比例。它以%给出(基于100%的入射辐射计)或作为0至1的无量纲数字给出(基于入射辐射归一化)。作为波长的函数做图,它形成反射光谱。在本发明范围内,关于对p偏振辐射的反射比的说明涉及用对内部空间侧的表面法线成65
°
的入射角测量的反射比。关于反射率或反射光谱的信息涉及用在所考虑的光谱范围内用100%的归一化的辐射强度均匀照射的光源进行的反射测量。
32.为了实现投影仪图像尽可能色彩中性的显示,反射光谱应尽可能平滑且不具有显著的局部最小和最大。在一个优选的实施方案中,在400nm至680nm的光谱范围中,出现的最大反射比与反射比平均值之间的差以及出现的最小反射比与反射比平均值之间的差应至多3%,特别优选至多2%。这里,甚至又使用以对内部空间侧的表面法线成65
°
的入射角测量的对p偏振辐射的反射比。所给出的差应理解为是指反射比(以%为单位给出)的绝对偏差,而不是相对于平均值的百分比偏差。由于根据本发明的反射涂层的导电层,用根据本发明的反射涂层可以没有问题地实现反射光谱的所给出的平滑度。
33.或者,可以使用在400nm至680nm的光谱范围内的标准偏差作为反射光谱的平滑度的量度。其为优选小于1%,特别优选小于0.9%,非常特别优选小于0.8%。
34.上述期望的反射特性尤其通过选择各个层的材料和厚度以及介电层序列的结构来实现。因此可以适当地调节反射涂层。
35.反射涂层是薄层堆叠,即薄的单层的层序列。该薄层堆叠包含恰好一个基于银的导电层。该基于银的导电层赋予反射涂层基本的反射性能和此外ir反射作用以及导电性。该基于银的导电层也可以简称为银层。所述反射涂层包含恰好一个银层,即,不多于一个银层,并且在该反射涂层的上方或下方也没有布置另外的银层。本发明的一个特别的优点是,可以用银层获得所需反射性能,而没有强烈降低透射率,如在使用多个导电层时既是这种
情况。然而,可以存在另外的导电层,其对反射涂层的电导性没有显著贡献,而是满足其它目的。这尤其适用于几何厚度小于1nm的金属阻挡层,其优选布置在银层和介电层序列之间。
36.所述导电层是基于银形成的。导电层优选包含至少90重量%的银,特别优选至少99重量%的银,非常特别优选至少99.9重量%的银。银层可以具有掺杂物,例如钯,金,铜或铝。银层的几何层厚度为优选至多15nm,特别优选至多14nm,非常特别优选至多13nm。由此能够在ir范围内达到有利的反射率,而不会强烈降低透射率。银层的几何层厚度为优选至少5nm,特别优选至少8nm。较薄的银层可导致层结构去湿。银层的几何层厚度特别优选为10nm至14nm或11nm至13nm。
37.所述反射涂层不包括其折射率小于1.9的介电层。因此,反射涂层的所有介电层均具有至少1.9的折射率。发明人在实验中已经表明,使用低折射层,如二氧化硅,对光学厚度之比具有不利影响,并且出现随之而来的对 p 偏振辐射不利的反射性能。本发明的一个特别的优点是,仅用相对高折射的介电层就可以实现所需反射性能。由于对于折射率小于1.9的低折射层尤其合适的是在磁场辅助阴极沉积中具有小的沉积速率的氧化硅层,因此可以快速且成本有利地制造根据本发明的反射涂层。
38.所述反射涂层在银层的上方和下方包含彼此独立的各一个折射率为至少1.9的介电层或介电层序列。所述介电层可以例如是基于氮化硅,氧化锌,锡-锌-氧化物,硅-金属-混合氮化物如硅-锆-氮化物,氧化锆,氧化铌,氧化铪,氧化钽,氧化钨或碳化硅形成的。所提及的氧化物和氮化物可以以化学计量,亚化学计量或超化学计量来沉积。它们可以具有掺杂,例如铝,锆,钛或硼。这些材料的作为单层形式具有至少1.9的折射率的层是已知的,本领域技术人员可以用已知方法获得。优选使用物理气相沉积的方法来沉积这些层,特别是磁控溅射。
39.上部介电层或层序列的光学厚度为优选100nm至200nm,特别优选130nm至170nm。下部介电层或层序列的光学厚度为优选30nm至100nm,特别优选40 nm到65nm。由此获得良好的结果。
40.在一个有利的实施方案中,在银层的上方和下方各布置一个介电层,它们可以被称为消除反射层,并且优选基于氧化物,例如氧化锡,和/或氮化物,例如氮化硅,特别优选基于氮化硅。由于其光学性能、其易得性及其高的机械和化学稳定性,已经证实氮化硅是有利的。硅优选掺杂有例如铝或硼。在介电层序列的情况下,基于氮化硅的层优选是上部层序列的最上层或下部层序列的最下层。上部消除反射层的几何厚度为优选50nm至100nm,特别优选55nm至80nm,特别是60nm至70nm。下部消除反射层的几何厚度为优选10nm至50nm,特别优选15nm至40nm,特别是20nm至35nm。
41.除了消除反射层外,任选可以存在折射率为至少1.9的另外的介电层。因此,上部和下部层序列可以彼此独立地包含改善银层的反射率的适配层。所述适配层优选是基于氧化锌,特别优选氧化锌zno
1-δ
形成的,其中0 《 δ 《 0.01。适配层优选另外包含掺杂物。适配层可以包含例如掺杂铝的氧化锌(zno:al)。为了避免过量的氧与含银层反应,优选以相对于氧亚化学计量地沉积氧化锌。适配层优选布置在银层与消除反射层之间。适配层的几何厚度为优选5nm至30nm,特别优选8nm至12nm。
42.也可以存在折射率增加层,其具有比消除反射层更高的折射率,同样彼此独立地
在上部和下部层序列中。由此可以进一步改善和微调光学性能,特别是反射性能。折射率增加层优选包含硅-金属-混合氮化物,如,硅-锆-混合氮化物,硅-铝-混合氮化物,硅-钛-混合氮化物或硅-铪-混合氮化物,特别优选硅-锆-混合氮化物。在此,锆的比例为优选15至45重量%,特别优选15至30重量%。作为替代材料可以考虑例如wo3,nb2o5,bi2o3,tio2和/或aln。折射率增加层优选布置在消除反射层与银层之间或者在适配层(如果存在的话)与消除反射层之间。折射率增加层的几何厚度为优选5nm至30nm,特别优选5nm至15nm。
43.在本发明的一个实施方案中,在导电层的下方布置恰好一个折射率为至少1.9的下部介电层,优选基于氮化硅。同样地,在导电层的上方布置恰好一个折射率为至少1.9的上部介电层,优选基于氮化硅。产生这样的从基底开始的层序列:下部消除反射层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部消除反射层。反射涂层优选不包含另外的介电层。上部消除反射层的几何厚度为优选50nm至100nm,特别优选55nm至80nm,特别是60nm至70nm。下部消除反射层的几何厚度为优选10nm至50nm,特别优选15nm至40nm,特别是20nm至35nm。
44.在本发明的另一个实施方案中,在导电层的下方布置第一下部介电层(消除反射层)和第二下部介电层(适配层)。同样地,在导电层的上方布置第一上部介电层(消除反射层)和第二上部介电层(适配层)。消除反射层和适配层的折射率为至少1.9。消除反射层优选是基于氮化硅形成的,适配层基于氧化锌。适配层优选布置在各自的消除反射层与银层之间:产生这样的从基底开始的层序列:下部消除反射层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部消除反射层。反射涂层优选不包含另外的介电层。上部消除反射层的几何厚度为优选50nm至100nm,特别优选55nm至80nm,特别是60nm至70nm。下部消除反射层的几何厚度为优选10nm至50nm,特别优选15nm至40nm,特别是20nm至35nm。适配层的几何厚度为优选5nm至30nm,特别优选8nm至12nm。
45.在本发明的另一个实施方案中,在导电层的下方布置第一下部介电层(消除反射层),第二下部介电层(适配层)和第三下部介电层(折射率增加层)。同样地,在导电层的上方布置第一上部介电层(消除反射层),第二上部介电层(适配层)和第三上部介电层(折射率增加层)。消除反射层和适配层以及折射率增加层的折射率为至少1.9。折射率增加层具有比消除反射层更高的折射率,优选至少2.1。消除反射层优选是基于氮化硅形成的,适配层基于氧化锌,折射率增加层基于硅-金属-混合氮化物,如,硅-锆-混合氮化物或硅-铪-混合氮化物。适配层优选具有最小的距银层的距离,而折射率增加层布置在适配层与消除反射层之间。产生这样的从基底开始的层序列:下部消除反射层
ꢀ–ꢀ
下部折射率增加层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部折射率增加层
ꢀ–ꢀ
上部消除反射层。反射涂层优选不包含另外的介电层。上部消除反射层的几何厚度为优选50 nm 至100 nm,特别优选55 nm 至80 nm,特别是60 nm 至70 nm。下部消除反射层的几何厚度为优选10 nm 至50 nm,特别优选15 nm 至40 nm,特别是20 nm 至35 nm。适配层的几何厚度为优选5 nm 至30 nm,特别优选8 nm 至12 nm。折射率增加层的几何厚度为优选5nm至30nm,特别优选5nm至15nm。
46.由于上部和下部介电层序列可以彼此独立地形成,因此上述实施方案的组合也是可行的,其中根据一个实施方案形成上部介电层/层序列且根据另一个实施方案形成下部介电层/层序列。产生以下的优选层序列(在每种情况下从基底开始,即从在其上沉积反射涂层的那个表面开始:
‑ꢀ
下部消除反射层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部折射率增加层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部折射率增加层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部折射率增加层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部折射率增加层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部折射率增加层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部折射率增加层
ꢀ–ꢀ
上部消除反射层在一个有利的实施方案中,反射涂层包括至少一个金属阻挡层。该阻挡层可以布置在银层的下方和/或上方,并且优选与银层直接接触。然后,该阻挡层位于银层和介电层/层序列之间。阻挡层用于保护银层免于氧化,特别是在经涂覆的玻璃板经受温度处理时,如其通常出现在弯曲工艺的范围内。阻挡层的几何厚度优选小于1nm,例如0.1nm至0.5nm。阻挡层优选是基于钛或镍-铬-合金形成的。
47.阻挡层仅微不足道地改变反射涂层的光学性能,并且优选存在于上述所有实施方案中。特别优选地,阻挡层直接布置在银层的上方,即在银层与上部介电层(序列)之间,在该处其是特别有效的。产生以下的优选层序列:
‑ꢀ
下部消除反射层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部折射率增加层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部折射率增加层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部折射率增加层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部折射率增加层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部消除反射层
‑ꢀ
下部消除反射层
ꢀ–ꢀ
下部折射率增加层
ꢀ–ꢀ
下部适配层
ꢀ–ꢀ
银层
ꢀ–ꢀ
阻挡层
ꢀ–ꢀ
上部适配层
ꢀ–ꢀ
上部折射率增加层
ꢀ–ꢀ
上部消除反射层在每种情况下,附加的阻挡层可以任选地直接布置在银层的下方,即在银层与下部介电层(序列)之间。
48.投影仪布置在挡风玻璃的内部空间侧,并在内玻璃板的内部空间侧表面上方照射
挡风玻璃。它对准hud区域并照射其以产生hud投影。根据本发明,投影仪的辐射主要是p偏振的,即,具有大于50%的p偏振辐射分量。投影仪的总辐射中p偏振辐射的分量越高,所需投影图像的强度就越强烈,并且挡风玻璃表面上不希望的反射的强度就越弱。投影仪的p偏振辐射分量为优选至少70%,特别优选至少80%,特别是至少90%。在一个特别有利的实施方案中,投影仪的辐射基本上是纯p偏振的-即,p偏振辐射分量为100%或仅略有偏差。偏振方向的说明在此涉及挡风玻璃上的辐射入射平面。p偏振辐射是指其电场在入射平面中振动的辐射。s偏振辐射是指其电场垂直于入射平面振动的辐射。入射平面由入射矢量和挡风玻璃在照射区域的几何中心中的表面法线张成向量空间。
49.投影仪的辐射优选以45
°
至70
°
,特别是55
°
至70
°
的入射角射到挡风玻璃上。在一个有利的实施方案中,入射角与布鲁斯特角的偏差最大为10
°
。然后,p偏振辐射在挡风玻璃的表面上仅微不足道地反射,因此不会产生重影图像。入射角是投影仪辐射的入射矢量与hud区域的几何中心中的内部空间侧表面法线(即,挡风玻璃的内部空间侧的外表面上的表面法线)之间的角度。在钠钙玻璃的情况下,空气-玻璃-过渡的布鲁斯特角为56.5
°
,这对于窗玻璃而言是通常常见的。理想地,入射角应尽可能接近此布鲁斯特角。但是,例如,也可以使用对于hud投影装置而言常见的65
°
入射角,该入射角可在交通工具中容易地实现,并且仅以小的程度偏离布鲁斯特角,因此p偏振辐射的反射仅可忽略地增加。
50.由于投影仪辐射的反射基本上在反射涂层上进行,而非在外部的玻璃板表面上,因此不必为了避免重影图像而将外部的玻璃板表面彼此成一定角度地布置。因此,挡风玻璃的外表面优选基本上彼此平行地布置。热塑性中间层为此优选不是楔形形成的,而是具有基本恒定的厚度,特别是在挡风玻璃的上棱边和下棱边之间的竖直走向上,就像内玻璃板和外玻璃板一样。相反,楔形中间层在挡风玻璃的上棱边和下棱边之间的竖直走向上具有可变的,特别是增加的厚度。中间层通常是由至少一个热塑性薄膜形成的。因为标准薄膜明显比楔膜更加成本有利,所以该挡风玻璃的制造变得更便宜。
51.外玻璃板和内玻璃板优选由玻璃制成,特别是钠钙玻璃,这对于窗玻璃而言是常见的。然而,原则上,所述玻璃板也可以由其他玻璃类型(例如硼硅酸盐玻璃,石英玻璃,铝硅酸盐玻璃)或透明塑料(例如聚甲基丙烯酸甲酯或聚碳酸酯)制成。外玻璃板和内玻璃板的厚度可以宽泛地变化。优选使用厚度为0.8mm至5mm,优选1.4mm至2.5mm的玻璃板,例如标准厚度为1.6mm或2.1mm的那些。
52.外玻璃板、内玻璃板和热塑性中间层可以是透明无色的,但也可以是着色的或上色的。在一个优选的实施方案中,通过挡风玻璃的总透射率(包括反射涂层)为大于70%。术语总透射率是指通过ece-r 43,附件3,
§ꢀ
9.1规定的机动车玻璃板透光率的测试方法。外玻璃板和内玻璃板可以彼此独立地是未预加应力、部分预加应力或预加应力的。如果玻璃板中的至少一个应具有预应力,则这可以是热或化学预应力。
53.在一个有利的实施方案中,外玻璃板是着色的或上色的。由此可以减小挡风玻璃的外侧反射率,从而使得玻璃板的印象对于外部观看者而言更加愉悦。然而,为了确保挡风玻璃的规定的70%的透光率(总透射率),外玻璃板的透光率应为优选至少80%,特别优选至少85%。在此,透光率描述了在380 nm至780 nm 的光谱范围中的可见光谱范围内以 0
°ꢀ
入射角透射的辐射比例。透光率可以借助于本领域技术人员已知的方法用商购可得的测量仪器来确定,例如来自perkin elmer的光谱仪。内玻璃板和中间层优选是透明的,即没有着
色或上色。例如,可以使用绿色或蓝色上色的玻璃作为外玻璃板。
54.挡风玻璃优选在空间的一个或多个方向上是弯曲的,如这对于机动车玻璃板而言是常见的,其中典型的曲率半径为大约10cm至大约40m。然而,挡风玻璃也可以是平面的,例如,当打算将它作为用于公共汽车,火车或拖拉机的玻璃板时。
55.热塑性中间层包含至少一种热塑性聚合物,优选乙烯乙酸乙烯酯(eva),聚乙烯醇缩丁醛(pvb)或聚氨酯(pu)或其混合物或共聚物或衍生物,特别优选pvb。中间层通常是由热塑性薄膜形成的。中间层的厚度为优选0.2mm至2mm,特别优选0.3mm至1mm。
56.所述挡风玻璃可通过本身已知的方法来制造。外玻璃板和内玻璃板通过中间层彼此层压,例如通过高压釜方法、真空袋方法、真空环方法、压延方法、真空层压机或其组合。外玻璃板和内玻璃板的接合在此通常在热、真空和/或压力的作用下进行。
57.反射涂层优选通过物理气相沉积(pvd)施加到玻璃板表面上,特别优选通过阴极溅射(“溅射”),非常特别优选通过磁场辅助的阴极溅射(“磁控溅射”)。该涂层优选在层压之前施加。代替将反射涂层施加到玻璃板表面上,其原则上也可以提供在布置在中间层中的载体薄膜上。
58.如果挡风玻璃应是弯曲的,则外玻璃板和内玻璃板优选在层压之前和优选在涂覆工艺之后经受弯曲工艺。优选地,外玻璃板和内玻璃板共同(即同时和通过同一工具)一致弯曲,因为由此使玻璃板的形状对于随后进行的层压而言最佳地彼此匹配。玻璃弯曲工艺的典型温度例如为500℃至700℃。该温度处理还增加了透明性并降低了反射涂层的薄层电阻。
59.本发明还包括根据本发明形成的挡风玻璃作为用于平视显示器的投影装置的投影面的用途,其中投影仪对准hud区域,其辐射主要是p偏振的。上述优选的实施方案相应地适用于该用途。
60.本发明另外包括根据本发明的投影装置作为机动车,特别是乘用车或载重汽车中的hud的用途。特别优选地,所述投影装置在此作为与传感器、特别是摄像头结合的hud来使用,其中反射涂层位于传感器的光路中。
61.下面参考附图和实施例更详细地解释本发明。所述图是示意图,并非按比例的。附图不以任何方式限制本发明。
62.其中:图1示出了作为具有hud区域和传感器区域的平面显示器的根据本发明的投影装置的平面图,图2示出了沿剖面线a-a'穿过图1的投影装置的横截面,图3示出了沿图1的剖面线a-a'穿过根据本发明投影装置的另一实施方案的复合玻璃板的横截面,图4示出了通过在内玻璃板上的根据本发明的反射涂层的实施方案的横截面,图5示出了根据实施例3和比较例4和9的复合玻璃板对p偏振辐射的反射光谱。
63.图1和2示出了用于hud的一个根据本发明的投影装置,其中在图1中示出了平面图,在图2中示出了沿图1的剖面线a-a'的横截面。该投影装置包括挡风玻璃10,特别是乘用车的挡风玻璃。该投影装置还包括投影仪4,其对准复合玻璃板10的一个区域。在通常被称为hud区域b的该区域中,通过投影仪4可以生成图像,当观看者5的眼睛位于所谓的眼动
范围e内时,该图像被观看者5(交通工具驾驶员)感知为在复合玻璃板10的远离他的一侧上的虚拟图像。挡风玻璃10由外玻璃板1和内玻璃板2构建而成,它们通过热塑性中间层3彼此连接。其下棱边u向下朝着乘用车的发动机方向布置,其上棱边o向上朝着车顶的方向布置。在安装位置下,外玻璃板1朝向外部环境,内玻璃板2朝向交通工具内部空间。反射涂层20布置在外玻璃板1的内侧与内玻璃板2的内侧之间。其可以布置在外玻璃板 1 的内侧上或内玻璃板 2 的内侧上,或者集成在热塑性中间层 3 中。
64.图3示出了根据本发明形成的挡风玻璃10的一个实施方案。投影装置的超出挡风玻璃10的部件对应于图1和图2并且在图3中未示出。外玻璃板1具有在安装位置下朝向外部环境的外侧表面i(也称作外玻璃板的外侧)和在安装位置下朝向内部空间的内部空间侧表面ii(也称作外玻璃板的内侧)。同样地,内玻璃板2具有在安装位置下朝向外部环境的外侧表面iii(也称作内玻璃板的内侧)和在安装位置下朝向内部空间的内部空间侧表面iv(也称作内玻璃板的外侧)。外玻璃板1和内玻璃板2例如由钠钙玻璃构成。外玻璃板1的厚度例如为2.1mm,内玻璃板2的厚度例如为1.6mm或2.1mm。中间层3例如由pvb薄膜形成,厚度为0.76mm。该pvb薄膜具有基本上恒定的厚度,除了可能的本领域常见的表面粗糙度外-它没有形成为所谓的楔膜。
65.内玻璃板2的外侧表面iii(内玻璃板的外侧)具有根据本发明的反射涂层20,该反射涂层20被提供作为用于投影仪辐射的反射面(并且可能额外作为ir反射涂层)。
66.根据本发明,投影仪4的辐射是p偏振的,特别是基本上纯p偏振的。由于投影仪4以接近布鲁斯特角的大约65
°
的入射角照射挡风玻璃10,因此投影仪的辐射在复合玻璃板10的外表面i、iv上仅微不足道地反射。相反,根据本发明的反射涂层20针对p偏振辐射的反射进行了优化。它用作投影仪4的辐射的反射面,用于产生hud投影。
67.图4示出了根据本发明的反射涂层20的一个实施方案的层序列。该反射涂层20是薄层的堆叠。该反射涂层20包括基于银的导电层21。金属阻挡层24直接布置在导电层21的上方。在导电层21的上方布置了上部介电层序列,其从下到上由上部适配层23b、上部折射率增加层23c和上部消除反射层23a组成。在导电层21的下方布置了下部介电层序列,其从上到下由下部适配层22b、下部折射率增加层22c和下部消除反射层22a组成。
68.所示出的层结构仅为示例性提供。因此,该介电层序列也可以包括更多或更少的层,只要在导电层21的上方和下方存在至少一个介电层。介电层序列也不必是对称的。示例性的材料和层厚度可以在下面的实施例中获悉。所示出的介电层和银层借助于磁控溅射来沉积。
69.在表1a和1b中示出了在根据本发明的实施例1至8的内玻璃板2的外侧表面iii上具有反射涂层20的挡风玻璃10的层序列,以及各个层的材料和几何层厚度层。介电层可以彼此独立被掺杂,例如用硼或铝。
70.为了比较,研究了不符合根据本发明的特征的比较例1至8。 它们的层序列在表2a和2b中示出。
71.实施例和比较例的区别主要在于上部介电层序列的光学厚度与下部介电层序列的光学厚度之比。光学厚度各自作为由表1a、1b和2a、2b中示出的几何厚度与折射率的乘积得出,其中对于sin使用2.0的值,对于sizrn使用2.2的值,对于zno使用2.0的值)。光学厚度及其比率汇总在表3a、3b、3c中。比率 描述了上部介电层23a或层序列23a、23b、任选的23c的光学厚度与下部介电层22a或层序列22a、22b、任选的22c的光学厚度之比。除了光学厚度
和光学厚度之比,表3a、3b和3c中还示出了在不同透射角下透射时p偏振辐射与s偏振辐射的偏振比和在光谱的可见光范围内的总透射率t
l
。在此,根据表 3a,在研究偏振比时使用的透射角为 61
°
,而表 3b 中显示了在67
°ꢀ
下和在表 3c中在55
°
下的层堆叠的偏振比。下的层堆叠的偏振比。
72.为了使根据本发明的挡风玻璃遵照法律规定被允许作为挡风玻璃,根据ece-r 43,附件3,
§ꢀ
9.1,通过挡风玻璃(包括反射涂层)的总透射率t
l
必须至少为 70%。同时,为了使hud投影装置与摄像头系统兼容,必需存在尽可能高的透射中p偏振辐射与s偏振辐射的偏振比。特别地,在此,在61
°
的透射角下应达到至少1.41的偏振比,在67
°
的透射角下应达到至少1.59的偏振比,和在55
°
的透射角下应达到至少1.28的偏振比。这有利于满足常见的摄像头系统中所要求的技术规格。在比率在根据本发明的范围内的实施例1至8中,在至少70%的总透射率下实现了良好的偏振比。因此,根据本发明的hud投影装置特别适合与摄像头系统一起使用。
73.图5示出了具有根据图3的基本结构的复合玻璃板10的反射光谱,其中根据表1a的根据本发明的实施例3以及根据表2a 的非根据本发明的比较例4分别示出了根据本发明和非根据本发明的层结构。为了更好地对实施例3和比较例4的光谱进行分类,还示出了根据表4a和4b的比较例9的具有非根据本发明的层结构的复合玻璃板的反射光谱。用在观察的光谱范围内发射均匀强度的p偏振辐射的光源,在内玻璃板2上方(所谓的内部空间侧反射)以相对于内部空间侧的表面法线成65
°
的入射角照射下记录反射光谱。因此,该反射测量近似于投影装置中的情况。
74.表4b 上部介电层序列的光学厚度下部介电层序列的光学厚度比率比较例91021420.72
75.从光谱的图形显示可以看出,具有根据本发明的上部和下部介电层或层序列的光学厚度之比的根据本发明的实施例3具有与非根据本发明的比较例4类似的曲线。在这两种情况中,在400nm至680nm的令人感兴趣的光谱范围内实现了相对平滑的光谱。为了更好地将它们分类,示出了根据非根据本发明的比较例9的复合玻璃板的光谱。在比较例9中,尽管也能达到相对高的平均反射值,但是在400 nm至680 nm的相关光谱范围内的光谱波动强烈,这可能导致hud图像的不希望的色移以及导致对于观看者而言较差的玻璃板颜色印象。相反,与之相比更平滑的实施例 3和比较例 4 的光谱产生颜色更加中性的hud 投影。此外改善了玻璃板的整体颜色印象。比较根据本发明的实施例3与比较例4表明,即使在根据本发明的层结构在其摄像头兼容性方面进行了优化之后,也保留了复合玻璃板的有利的hud特性。因此,根据本发明的hud投影装置特别适合与摄像头系统一起使用。
76.所有玻璃板的光透光率均大于70%,因此它们可以用作挡风玻璃。
77.附图标记列表:(10)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
挡风玻璃(1)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
外玻璃板(2)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
内玻璃板(3)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
热塑性中间层(4)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
投影仪
(5)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
观看者/ 交通工具驾驶员(6)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
传感器(20)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
反射涂层(21)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
导电层(22a)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第一下部介电层 / 消除反射层(22b)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第二下部介电层 / 适配层(22c)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第三下部介电层 / 折射率增加层(23a)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第一上部介电层 / 消除反射层(23b)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第二上部介电层 / 适配层(23c)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第三上部介电层 / 折射率增加层(24)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
金属阻挡层(o)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
挡风玻璃 10的上棱边(u)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
挡风玻璃 10的下棱边(b)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
挡风玻璃 10的hud区域(e)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
眼动范围(s)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
挡风玻璃 10的传感器区域(i)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
外玻璃板 1的远离中间层3的外侧表面(ii)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
外玻璃板 1的朝向中间层3的内部空间侧表面(iii)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
内玻璃板 2的朝向中间层3的外侧表面(iv)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
内玻璃板 2的远离中间层3的内部空间侧表面。