1.本发明涉及半导体技术领域,特别涉及一种外延片制备方法、外延片及发光二极管。
背景技术:2.紫外led一般指发光中心波长在400nm以下的led,紫外led因其具有光子能量高、波长短、体积小、功耗低、寿命长、环境友好等特点,而在高显色指数白光照明、高密度光学数据储存、传感器、平版印刷、空气净化环保等领域具有广泛的应用。
3.过去十年中,algan材料因其在紫外光电器件中的巨大应用潜力而备受关注,然而,algan基紫外led的研制面临的许多的技术困难,一、电子本身有效质量较小,具有较高的迁移率,导致电子很多容易通过量子阱而溢出到p层;二、随着al组分的增加,容易导致外延生长的algan薄膜缺陷密度高、表面不平整等问题,难以获得高晶体质量的algan材料,且高al组分的algan材料不论是n型掺杂还是p型掺杂,相比gan材料而言,algan材料都是要困难的多,尤其是p-algan的掺杂尤为棘手,掺杂剂mg的活化效率低,导致空穴不足,辐射复合效率降低;三、衬底表面含有的氧化物在外延生长的高温条件下分解出的氧原子会随着外延片的生长而向上扩散,由于紫外led外延片中的al组分较高,而al原子对氧原子有着极强的吸附性,使得外延片中的氧原子含量偏高,背景载流子浓度偏高,晶体质量会下降,在制作芯片时大电流密度下可能会被击穿,抗静电能力差。
4.现有技术中,为了解决上述问题,目前大部分的紫外led外延片生长一般先通过mocvd方法或pvd方法或两者相结合的方法制备aln(或algan)缓冲层,然后在mocvd中继续外延生长后续外延结构,然而,aln(或algan)缓冲层虽然能够一定程度上缓解衬底与algan外延片的晶格失配,但是由于高al组分依然存在导致容易吸附来自衬底的氧原子并向外延片扩散,使得外延片中的氧原子含量偏高,背景载流子浓度依然偏高,晶体质量依然会下降,导致抗静电能力依然差。
技术实现要素:5.有鉴于此,本发明的目的是提供一种外延片制备方法、外延片以及发光二极管,旨在解决现有技术中的外延片抗静电能力差的问题。
6.本发明实施例是这样实现的,一种外延片制备方法,所述方法包括:
7.提供一衬底;
8.在所述衬底上生长tic薄膜层;
9.在所述tic薄膜层上依次生长aln缓冲层、未掺杂的algan层、n型掺杂algan层、多量子阱层、电子阻挡层、p型掺杂gan层以及接触层。
10.进一步的,上述外延片制备方法,其中,所述在所述衬底上生长tic薄膜层的步骤中,所述tic薄膜层通过物理气相沉积(pvd)溅射生成。
11.进一步的,上述外延片制备方法,其中,生长tic薄膜层的生长温度为400-600℃,
溅射功率为500~800w,压力为1~10torr。
12.进一步的,上述外延片制备方法,其中,所述生长tic薄膜层的溅射靶材为ti,反应气体为ch4,溅射气体为ar。
13.进一步的,上述外延片制备方法,其中,所述在所述衬底上生长tic薄膜层的步骤中,所述tic薄膜层的生长厚度为10至20nm。
14.进一步的,上述外延片制备方法,其中,所述在所述衬底上生长tic薄膜层的步骤中,所述tic薄膜层的生长厚度为16nm。
15.进一步的,上述外延片制备方法,其中,所述在所述tic薄膜层上依次生长aln缓冲层、未掺杂的algan层、n型掺杂algan层、多量子阱层、电子阻挡层、p型掺杂gan层以及接触层的步骤包括:
16.在生长温度为850℃-1100℃、生长压力为50torr-100torr的生长条件下外延生长厚度为100至200nm的aln缓冲层。
17.进一步的,上述外延片制备方法,其中,在生长温度为850℃-1100℃、生长压力为50torr-100torr的生长条件下外延生长厚度为100至200nm的aln缓冲层的步骤之后还包括:
18.所述aln缓冲层外延生长完成后在氢气气氛下退火5~10min。
19.本发明的另一个目的在于提供一种外延片,所述外延片由上述任一项所述的外延片制备方法制备得到,所述外延片包括:
20.衬底;
21.生长在所述衬底上的tic薄膜层;
22.以及由所述tic薄膜层远离所述衬底一侧依次生长的aln缓冲层、未掺杂的algan层、n型掺杂algan层、多量子阱层、电子阻挡层、p型掺杂gan层以及接触层。
23.本发明的另一个目的在于提供一种发光二极管,所述发光二极管包括上述的外延片。
24.与现有技术相比,本发明在生长aln缓冲层之前,先通过在衬底上生长一层tic薄膜层。由于衬底表面的氧化物在高温外延生长时会分解出氧原子并随着外延层向上扩散,aln或algan对氧具有很强的吸附性。设置的tic薄膜层中的tic与aln不仅具有很好的晶格匹配度,又有tic中的c原子位于ti子晶格的所有八面体位置,是一种紧密堆积的间隙化合物,因此,tic薄膜能够很好的阻挡来自衬底向上扩散的氧原子杂质,降低外延层中的背景载流子浓度,提高外延层晶体质量,从而提高外延片的抗静电能力。
附图说明
25.图1为本发明第一实施例当中的外延片制备方法的流程图;
26.图2为现有技术中的外延片与本发明一实施例当中的外延片制备方法制备出的外延片的抗静电能力对比示意图;
27.图3为本发明第二实施例当中的外延片的结构示意图。
具体实施方式
28.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的
技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
29.此外,本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。在具体实施方式及权利要求书中,由术语“中的一者”连接的项目的列表可意味着所列项目中的任一者。例如,如果列出项目a及b,那么短语“a及b中的一者”意味着仅a或仅b。在另一实例中,如果列出项目a、b及c,那么短语“a、b及c中的一者”意味着仅a;仅b;或仅c。项目a可包含单个元件或多个元件。项目b可包含单个元件或多个元件。项目c可包含单个元件或多个元件。在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目a及b,那么短语“a及b中的至少一者”或“a或b中的至少一者”意味着仅a;仅b;或a及b。在另一实例中,如果列出项目a、b及c,那么短语“a、b及c中的至少一者”或“a、b或c中的至少一者”意味着仅a;或仅b;仅c;a及b(排除c);a及c(排除b);b及c(排除a);或a、b及c的全部。项目a可包含单个元件或多个元件。项目b可包含单个元件或多个元件。项目c可包含单个元件或多个元件。
30.实施例一
31.请参阅图1,为本发明第一实施例中提出的外延片制备方法,所述方法包括步骤s10~步骤s12。
32.步骤s10,提供一衬底。
33.其中,衬底可为图形化或非图形化平片衬底,衬底与外延层的特性配合要非常严格,如晶格失配及热失配需要匹配才能外延生长出质量优异的外延层,否则直接影响外延层的生长质量及发光二极管的性能。在本实施例中,衬底采用以(0001)晶向蓝宝石(al2o3)材料,其化学性能稳定、不吸收可见光、价格便宜成本低、制作技术成熟简单,为发光二极管使用最广泛的衬底材料。
34.步骤s11,在所述衬底上生长tic薄膜层。
35.具体的,tic薄膜层通过物理气相沉积(pvd)溅射生成,在具体实施时,生长tic薄膜层的生长温度为400-600℃,溅射功率为500~800w,压力为1~10torr,其中,生长tic薄膜层的溅射靶材为ti,反应气体为ch4,溅射气体为ar。
36.更具体的,所述tic薄膜层的生长厚度为10至20nm,例如,10nm、12nm、14nm、16nm、18nm以及20nm。在本发明一些较佳的实施例当中,所述tic薄膜层的生长厚度优选为16nm。
37.请参阅图2,分别对现有技术中的外延片制作的芯片以及本发明提出的外延片中的tic薄膜层在不同厚度下制作的芯片的hbm模式测试4kv通过率,从图中可以明显看出,在生长有tic薄膜层的外延片的抗静电能力比现有技术中的抗静电能力大大提升,并且在tic薄膜层厚度为10至20nm之间时抗静电能力较为明显,且随着厚度的增加而增加,厚度增加至16nm以上抗静电能力无明显增加。
38.步骤12,在所述tic薄膜层上依次生长aln缓冲层、未掺杂的algan层、n型掺杂algan层、多量子阱层、电子阻挡层、p型掺杂gan层以及接触层。
39.其中,在衬底先生长一层tic薄膜层后转入化学气相沉积(mocvd)中进行之后的外延生长。
40.具体的,作为一个具体的实施例,aln缓冲层、未掺杂的algan层、n型掺杂algan层、
多量子阱层、电子阻挡层、p型掺杂gan层以及接触层的生长可按如下方式进行生长:
41.调节生长温度至850℃-1100℃、生长压力在50torr至100torr之间,外延生长厚度在100至200nm之间的aln缓冲层,生长完后在氢气气氛下退火5~10min。
42.退火完成后,调节生长温度至1050℃-1200℃、生长压力在50torr至100torr之间,外延生长厚度在1.0至3.0微米的未掺杂algan层,其中,al组分在0.3-0.8之间。
43.在未掺杂algan层生长结束后,调节生长温度在1100℃-1200℃,压力在50torr至100torr之间,生长厚度在1.0-3.0微米之间的si掺杂的n型algan层,其中,si掺杂浓度在5*10
19
cm-3-5*10
20
cm-3
之间,al组分在0.2-0.6之间。
44.在n型掺杂algan层生长结束后,调节生长温度的范围在900℃-1000℃间,压力范围在50torr与200torr之间外延生长单个厚度为2-4nm的gan阱层,调节生长温度在1000℃-1100℃,生长压力在50torr到100torr之间,外延生长单个厚度在8-20nm之间、al组分在0.1-0.5之间的algan垒层,以形成多量子阱层(mqw),其中,多量子阱层由5到12个周期gan/algan组成。
45.在多量子阱层生长完后调节生长温度在1000℃与1100℃之间,生长压力为50torr与100torr之间外延生长,厚度在20nm至100nm之间,al组分在0.1-0.5之间的algan电子阻挡层
46.在电子阻挡层生长完后,调节生长温度在950℃-1050℃之间,生长压力在50torr-300torr之间外延生长厚度在30nm至200nm之间的p型掺杂gan层,其中,mg的掺杂浓度在10
19
cm-3-10
20
cm-3
之间。
47.在p型掺杂gan层生长完后,调节生长温度区间为1000℃-1100℃,生长压力区间为50torr-100torr,外延生长接触层厚度为10nm至50nm之间、al组分在0.0-0.3之间的algan。
48.上述外延结构生长结束后,将反应腔温度降低,在氮气气氛中退火处理,退火温度区间为650℃-850℃,退火处理5到15分钟,将至室温外延生长结束。
49.在具体实施时,三甲基铝(tmal)、三甲基镓或三乙基镓(tmga或tega)和氨气分别作为ⅲ族源和
ⅴ
族源的前驱体,硅烷和二茂镁分别作为n型掺杂剂和p型掺杂剂的前驱体,氮气和氢气作为载气。
50.综上,本发明上述实施例当中提出的外延片制备方法,在生长aln缓冲层之前,先通过在衬底上生长一层tic薄膜层。由于衬底表面的氧化物在高温外延生长时会分解出氧原子并随着外延层向上扩散,aln或algan对氧具有很强的吸附性。设置的tic薄膜层中的tic与aln不仅具有很好的晶格匹配度,又有tic中的c原子位于ti子晶格的所有八面体位置,是一种紧密堆积的间隙化合物,因此,tic薄膜能够很好的阻挡来自衬底向上扩散的氧原子杂质,降低外延层中的背景载流子浓度,提高外延层晶体质量,从而提高外延片的抗静电能力,解决了现有技术中的外延片抗静电能力差的问题。
51.实施例二
52.请参阅图3,为本发明第二实施例中提出的外延片,所述外延片由上述实施例一中提出的外延片制备方法制备得到,所述外延片包括:
53.衬底1;
54.生长在所述衬底上的tic薄膜层2;
55.以及由所述tic薄膜层2远离所述衬底1一侧依次生长的aln缓冲层3、未掺杂的
algan层4、n型掺杂algan层5、多量子阱层6、电子阻挡层7、p型掺杂gan层8以及接触层9。
56.实施例三
57.本发明第三实施例中提出的发光二极管,包括上述实施例二中的外延片,所述外延片由上述实施例一当中外延片制备方法制备得到。
58.以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。